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 ABSTRACT 
Background.  We aimed to determine the role of skeletal muscle mitochondrial ATP 

production rate (MAPR) in relation to exercise tolerance following resistance training in 

CHF. 

Methods and Results. Thirteen CHF patients (NYHA functional class 2.3 ± 0.5; LVEF 

26 ± 8%; age 70 ± 8 years) underwent testing for 2OV& peak, and resting vastus lateralis 

muscle biopsy. Patients were then randomly allocated to 11 weeks of RT, (n = 7) or 

continuance of usual care (C, n = 6) following which testing was repeated. Muscle 

samples were analysed for MAPR, metabolic enzyme activity and capillary density.  

2OV& peak and MAPR in the presence of the pyruvate and malate (P+M) substrate 

combination, representing carbohydrate metabolism, increased in RT (p<0.05) and 

decreased in C (p<0.05) with a significant difference between groups ( 2OV& peak p = 

0.005; MAPR p = 0.03). There was a strong correlation between the change in MAPR 

and the change in 2OV& peak over the study (r = 0.875; p < 0.0001), the change in MAPR 

accounting for 70% of the change in 2OV& peak.  

Conclusions. These findings suggest that mitochondrial ATP production is a major 

determinant of aerobic capacity in CHF patients and can be favourably altered by muscle 

strengthening exercise.  

 

KEY WORDS: exercise, oxidative capacity, skeletal muscle. 
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 INTRODUCTION 

Chronic heart failure (CHF) is characterized by a low peak oxygen uptake 

( 2OV& peak) that is an independent predictor of morbidity and mortality (1, 2). The low 

2OV& peak is associated with impaired exercise tolerance and early onset of lactic acidosis 

during incremental exercise (3). Muscle oxidative function is reduced in CHF and it is 

widely accepted that this is a major cause of exercise intolerance in this patient group. 

Additionally, muscle atrophy may also contribute to the reduced exercise capacity in 

CHF patients (3, 4). These patients also exhibit reduced muscle strength due at least 

partly to the significant muscle atrophy (4). Both the low exercise capacity and the 

reduced strength contribute to functional impairment in these patients.  

 

Traditionally, endurance training (ET) has been the recommended modality to 

increase 2OV& peak and muscle oxidative capacity. However, this form of training has little 

influence on muscle mass (5, 6). Conversely, resistance training (RT) results in increases 

in muscle strength and skeletal muscle hypertrophy in healthy young volunteers (7, 8), 

but generally has been thought not to change muscle oxidative capacity (9) or capillary 

density (7). Morphometric changes that occur in response to RT in young participants 

include a transition from type IIX to IIA fibres (9). Likewise, studies that investigated the 

effects of RT in healthy elderly subjects reported gains in muscle strength and muscle 

mass (10, 11) and fibre type transitions from IIX to IIA fibres (11). However, in healthy 

elderly volunteers, RT has also been demonstrated to increase endurance exercise 

capacity ( 2OV& peak) in conjunction with increases in skeletal muscle oxidative capacity 

(10) and the capillary to fibre perimeter exchange index (12).  
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Previously we have reported significant improvements in both muscle strength 

and 2OV& peak in CHF patients randomized to 11 weeks of RT compared with a control 

group which had no increase in muscle strength and a slight decrease in  (13). The 

current study investigated a separately stratified cohort of the CHF patients from our 

previous work with the aim of investigating the effect of resistance exercise training on 

skeletal muscle mitochondrial ATP production rate (MAPR) as an integrated measure of 

muscle oxidative capacity, and secondarily to relate changes in MAPR, metabolic 

enzyme activity and capillary density to changes in 

2OV&

2OV& peak.  

 

In particular, it was hypothesized that improved skeletal muscle MAPR might 

explain the improvements in exercise tolerance produced by a program of muscle 

strengthening exercise in CHF patients. 
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METHODS 

Inclusion criteria were: Patients with left ventricular systolic failure, ejection 

fraction below 40%, New York Heart Association (NYHA) functional classes II and III, 

and stable (>2 weeks) pharmacological therapy. All patients were a minimum of six 

months post any coronary intervention that might lead to improvements in left ventricular 

function prior to commencement in the study. 

 

Exclusion criteria were: Current angina or occurrence within the previous 6 

months of myocardial infarction, cardiac arrest, symptomatic or sustained ventricular 

tachycardia; musculoskeletal or respiratory problems or other co-morbidity that 

contraindicate exercise; baseline assessment suggesting unsatisfactory control of heart 

failure, symptoms preventing the undertaking of exercise, exercise-induced ventricular 

tachycardia (symptomatic or sustained), or blood pressure drop of ≥ 20 mmHg during 

baseline exercise testing for 2OV& peak. Patients were withdrawn if they developed any of 

the above exclusion criteria during participation in the study. 

 

Patients consenting to skeletal muscle biopsy underwent a separate stratified 

randomization. Medical management continued throughout the study, and the control 

group was advised to maintain previous (i.e. pre – study) activity levels which were 

generally sedentary. 
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Written informed consent was obtained from all patients prior to their entry into 

this study that was approved by the Human Research Ethics Committees of Austin Health 

and Victoria University of Technology and complied with the Declaration of Helsinki.  

 
 

Resistance training protocol.  

Training (three months, 3 sessions per week) was undertaken in the hospital 

gymnasium using a multi-station hydraulic resistance training system (HydraGym, 

Belton, USA), arm (Repco, Melbourne, Australia) and leg cycling (Repco, Melbourne, 

Australia) ergometers, and a set of stairs as previously described (13). Briefly, the 

graduated resistance training program used the following exercises, alternating between 

upper and lower body: leg cycling (0.5 - 2 min), elbow extension / flexion (30 s), stair 

climbing (0.5 - 2 min), arm cycling (0.5 - 2 min), knee extension / flexion (30 s), shoulder 

press / pull (30 s). Recovery intervals between exercises were determined as the period 

required to return heart rate to within 10 beats of the pre-exercise (rest) recording. For 

safety reasons workload intensities were reduced if the heart rate response to a station 

was within 5 b.min-1 of peak heart rate. Exercise progressions were introduced gradually 

either by increasing intensity (resistance) or the number of sets for a given exercise. 

Adherence was monitored as attendance. Adverse events were documented. Cardiac rate 

and rhythm were continuously monitored and recorded during exercise on a four channel 

(patient) telemetry system (prototype designed by Victoria University bioengineers, 

Melbourne, Australia). 
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Exercise Tests and Blood Sampling.  

Peak total body oxygen consumption ( 2OV& peak) was determined during a 

symptom-limited graded exercise test on an electronically braked bicycle ergometer 

(Ergomed, Siemens, Erlangen, Germany), commencing at 10 W and increasing by 10 

W.min-1 to volitional fatigue or a level of 17 on the 6-20 point Borg scale of perceived 

exertion (14). Expired volume and expired oxygen and carbon dioxide concentrations 

were analysed and used to compute , carbon dioxide production (VCO2OV& 2), respiratory 

exchange ratio (RER = VCO2/ ) and ventilatory equivalents (V2OV& E/ ) as previously 

described (13).  Arterialised blood samples were obtained during the incremental exercise 

test from a dorsal hand vein via a 20-guage indwelling catheter. Oxygen saturation in the 

blood samples was consistently in excess of 95%, confirming arterialisation. Details of 

the exercise testing protocols and measurements have been reported previously (13). 

Plasma lactate levels were determined and lactate threshold calculated using a log-log 

transformation plot of plasma lactate concentration versus power output as previously 

described (3).  

2OV&

 

 Unilateral (right leg) skeletal muscle strength for knee extension/flexion were 

assessed using an isokinetic dynamometer (MERAC, Universal, Cedar Rapids, Iowa), 

with microprocessor, as described previously (3, 13, 15, 16) 

 

Muscle Biopsy.  
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Approximately 4 days after both the baseline and final incremental exercise tests 

for measuring 2OV& peak, resting muscle biopsies were obtained from the vastus lateralis. 

These were separated and stored as described previously (3). Fresh muscle (35-40mg) 

was placed on ice and immediately taken to the laboratory for the determination of 

MAPR. A second piece of muscle (15-20mg) was immediately frozen in liquid nitrogen 

for later analyses of enzyme activities. A third piece (15-20mg) was embedded in Tissue 

Tek mounting medium and immediately immersed in isopentane that had been cooled in 

liquid nitrogen, and then stored in liquid nitrogen for later histochemical analysis. 

 
Analytical Measurements.  

Muscle samples were used to determine MAPR. Fresh muscle was placed on a 

plate over ice, dissected free of visible connective tissue, minced finely with a scalpel 

blade, and then transferred to a ground glass tissue homogenizing tube (Kontes, New 

Jersey) for weighing and homogenization as described previously (3). The homogenizing 

solutions and the procedures for the preparation of the mitochondrial suspension have 

previously been described by Wibom and Hultman (17). 

 

In brief, MAPR was determined at 25oC by a chemiluminescence method using a 

combination of pyruvate and malate (P+M) representing pathways of carbohydrate 

metabolism as the principal substrate. Four other substrate combinations representing fat 

(palmitoyl carnitine and malate; PC+M), protein (alphaketoglutarate; α-kg), complex II 

of the electron transport chain (succinate and rotenone; S+R) and a mixture of 

carbohydrate, protein and fat metabolism (pyruvate, palmitoyl carnitine, malate and 

alphaketoglutarate; PPKM) were secondarily tested. All measurements of MAPR were 
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made in duplicate, completed within 4 h of biopsy and are expressed as mmol.min-1.kg-1 

wet weight of muscle. ATP production by the adenylate kinase reaction and other non-

specific reactions was determined from a blank containing ADP and mitochondrial 

suspension alone.  Methods for determining the activity of oxidative enzymes citrate 

synthase (CS) and β-hydroxyacyl coenzyme A dehydrogenase (HAD), and glycolytic 

enzymes phosphofructokinase (PFK) and lactate dehydrogenase (LDH), and the method 

for quantitating capillary density, have been previously described (3).  

 

Capillary Density 

Cross-sections (16mm) of the muscle were stained for capillary density using the 

periodic acid Schiff-amylase method (18). The capillary to fibre ratio was determined by 

dividing the number of capillaries in a section by the number of muscle fibres and were 

determined from sections containing 197 ± 13 (mean ± SEM) fibres.  

 

Statistical Analysis.  

Data was analysed using two-way repeated measures analysis of variance 

(ANOVA) with group and time factors (SPSS v 11.0; Chicago, Illinois). Where 

significant main effects (group or time) were identified by ANOVA, t-tests were used to 

locate the specific effects. Multiple regression analyses of muscle variables and exercise 

tolerance were also conducted. Data are expressed as means ± SEM. A p value of less 

than 0.05 was designated to indicate statistical significance. 
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RESULTS 

Patient Characteristics.  

Of 39 CHF patients who were randomized into resistance training or control 

groups, 13 (12 male/1 female; 70 ± 8 years, 84 ± 18 kg, body mass index 29 ± 6 kg/m2; 

mean ± SD) agreed to skeletal muscle biopsy and underwent a separate stratified 

randomization according to a generated random number method (19). The patients were 

in NYHA functional class II (n = 9) & III (n = 4) and had left ventricular ejection (LVEF) 

of 26 ± 8% by radionuclide gated blood pool scanning. The average time since diagnosis 

of CHF in the patients was 36 ± 40 months (mean ± SD). These two groups (RT: n = 7; 

C: n = 6) were well-matched at baseline (Table 1), and to the full patient cohort. Exercise 

data for the complete cohort are presented in table 2 and have been included due to their 

relevance to the overall findings. Paired biopsies from all 13 patients were available for 

MAPR, CS and capillary density but in a single case insufficient muscle sample was 

available for the other analytical procedures. 

 

Training Compliance and Medication Status.  

All of the participants in the RT group were compliant and completed a minimum 

of 33 training sessions. Participants randomized to control complied with the request to 

maintain previous activity levels. Minimal changes in medications occurred among 

patients in either group during or in the month prior to commencement of the study 

(Table 1). 

 

Exercise Tests.  
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There were no baseline differences in either 2OV& peak, or lactate threshold between 

groups. There was an increase in 2OV& peak in the RT group and a decrease in the C 

participants (Table 2; p<0.01) after the intervention, concordant with the full cohort. 

Lactate threshold (W) increased significantly in the RT group (28 ± 4 vs 45 ± 4 W; 

p<0.01) but remained unaltered in C (25 ± 2 vs 28 ± 4 W) following the intervention 

(Table 2) and again this also occurred in the full cohort. No changes were observed in 

either group for peak RER or peak (VE/VO2) following the intervention (Table 2). 

 

There were no significant differences in either quadriceps (p = 0.42) or 

hamstrings (p = 0.47) muscle strength between patients randomised to RT or C at 

baseline prior to the intervention. There were trends towards increases in both quadriceps 

and hamstrings strength in the group of patients randomised to the training group (Table 

2). 

 

Muscle Oxidative Capacity.  

Using the substrate combination pyruvate and malate (P+M), MAPR increased in 

the training group (p<0.05) and decreased in the control group (p<0.05) (Table 3) during 

the 11 week intervention, with a significant difference between groups (p = 0.03). No 

significant difference was found in the response to any of the other MAPR substrates 

between the groups or within the groups (Table 3). CS activity increased (p<0.01) in the 

training group and there was a trend towards an increase in HAD (p<0.05) (Table 3). The 

activities of CS and HAD were unchanged in the control group following the intervention 

period, with trained patients having significantly greater increase in CS activity than 
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controls (p = 0.02). There were no changes in the activities of either of the glycolytic 

enzymes PFK or LDH following the intervention period in either group. Changes in 

2OV& peak as a result of the intervention were significantly correlated with changes to both 

MAPR (P+M: Figure 1; p < 0.0001) and the oxidative enzyme HAD (p < 0.05). 

Multivariate analysis of metabolic variables revealed that the change in MAPR, using the 

P+M substrate combination accounted for 75% of the change in 2OV& peak.Capillary 

Density.  

Capillary to fibre ratio increased significantly more (p = 0.039) in the training 

group (1.01 ± 0.05 to 1.17 ± 0.03) than in the control group (1.15 ± 0.03 and 1.14 ± 0.03) 

over 11 weeks (Table 4).  

 

DISCUSSION 

The main finding of the current study was that RT was associated with increases 

in several indices of muscle oxidative capacity, including CS activity and, in particular, 

intact mitochondrial maximally-activated ATP production rate (MAPR). Significantly, 

the observed changes in muscle oxidative capacity using MAPR were strongly related to 

changes in 2OV& peak (Figure 1), a finding not previously reported, and explaining most of 

the improvement in 2OV& peak produced by this exercise program. This suggests that 

improvements in mitochondrial ATP production rate may be a major determinant of 

exercise-induced increases in aerobic capacity in heart failure patients. Whilst aerobic 

training has previously been shown to increase volume density of mitochondria (20) and 

RT has been shown to increase the activity of CS in female CHF patients (21) and male 

heart transplant recipients (22), this is the first study to examine the effects of RT on 
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MAPR, an integrated measure of ATP production rate in intact mitochondria and 

considered a more robust indicator of muscle oxidative capacity than activities of 

oxidative enzymes (3). In addition to the improvement in MAPR, the circuit resistance 

exercise training program, when compared with controls, resulted in marked 

improvement in both lactate threshold (p = 0.012) and 2OV& peak (p = 0.005).  

 

In the current study, 2OV& peak increased significantly in the RT group and 

decreased in the control patients. Improved sub-maximal exercise tolerance and muscle 

efficiency following RT protocols of 10 and 11 weeks have been reported, suggesting 

improvement in the functional capacity of the patients (15, 21). While the increase in 

2OV& peak in the RT group was significant in terms of improving functional capacity in 

CHF, the decrease in 2OV& peak in those randomized to the control group has negative 

implications for CHF patients not involved in exercise training. Many prospective 

randomized studies of aerobic and/or resistance training have reported no deterioration in 

2OV& peak in the non-exercise control groups (20, 21, 23). However several studies have 

reported decreases in 2OV& peak in non exercising controls.(24, 25) Kiilavuori and 

colleagues (26) indicated that there were falls in 2OV& peak for  their control group in an 

endurance training study, but did not present this data . Possible explanations for the 

decrease in 2OV& peak  in our  inactive volunteers include clinical deterioration, onset of 

cardiac cachexia, decreased aerobic power due to continued deconditioning of these 

generally otherwise sedentary patients, decreased effort on the part of the patients at 

endpoint, or technical problems with the accuracy or reliability of the cardiorespiratory 
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data measurements. We have previously discounted the latter two explanations. (16) 

There was little evidence of changed clinical condition: most of the patients studied over 

the three-month period maintained stable medication regimes and all patients in the 

control group returned for endpoint testing. Mean weight of the control group increased 

by 1 kg, arguing against a cachexia mechanism. Therefore, the fall in VO2peak in the 

control patients was probably due to deterioration of aerobic power due to prolongation 

of inactivity or progression of the disease. The patients were instructed to maintain their 

pre-study activity habits, and this was monitored. The implication of this finding is that 

exercise training in CHF patients not only improves exercise tolerance, but prevents a 

decline that underlines its value for CHF patients. 

 

MAPR in the presence of the substrate combination P+M increased significantly 

in the training group and decreased in the control group over the intervention period. 

While this was the only substrate combination (of the five trialled) to increase in response 

to the training stimulus, it is the substrate that we postulated to be the most responsive in 

the context of this study. This is because the P+M substrate combination simulates the 

effect of carbohydrate metabolism. During training, patients exercised at heart rates 

approaching the peak heart rates they obtained during incremental exercise testing (>85% 

of peak) indicating that the exercise was of relatively high intensity. The majority of the 

increased demand for ATP resynthesis via oxidative mechanisms would be met by 

carbohydrate metabolism, as lipid metabolism has been demonstrated to be negligible at 

high exercise intensities (27). The changes in MAPR (P+M) were significantly related to 

changes in 2OV& peak. In addition, the results indicate that skeletal muscle oxidative 
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capacity is increased following circuit resistance training in CHF patients and that 

training also offsets the decline in oxidative capacity that was observed in patients 

randomized to the control group. We have previously suggested that muscle oxidative 

capacity in untrained CHF patients, at a single point in time, might not be dissimilar to 

that of sedentary controls (3). However, the rapid decrease of oxidative capacity and 

2OV& peak in the current control group of CHF patients suggests that these patients 

deteriorate over time and that this deterioration can be reversed by circuit resistance 

training. 

 

Previously, we have speculated that the lower 2OV& peak in CHF patients may be 

due at least in part to lower rates of oxidative phosphorylation during incremental 

exercise (3). This may be due to a number of factors including reduced muscle blood 

flow during exercise or muscle fibre transformations resulting in early onset of lactic 

acidosis. Training resulted in a significant increase in the lactate threshold, with no 

change in the control group following the intervention period. Jubrias et al (28) have 

demonstrated that intracellular acidosis inhibits ATP supply from oxidative 

phosphorylation in contracting skeletal muscle, thus limiting sustained oxidative flux to 

rates below true mitochondrial capacity. Consequently the later onset of lactic acidosis 

after training indicates that flux through oxidative phosphorylation is likely to be 

maintained for longer during incremental exercise.  

 

It is possible that the change in lactate threshold may be the result of alterations in 

muscle blood flow during exercise. We have previously demonstrated that resistance 
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training results in increased forearm blood flow at rest and in response to submaximal 

exercise and limb ischemia in CHF patients (13). In the current study the capillary to 

fibre ratio was increased in the training group following the intervention period, which 

would explain the previously demonstrated increase in skeletal muscle blood flow (13).  

 

Skeletal Muscle Strength. Previously we have reported significant improvements in the 

strength of chronic heart failure patients following a resistance training intervention (13). 

These changes are consistent with those reported in previous studies (15, 21). The current 

study utilised a prospectively stratified sub group of patients, part of the previously 

reported cohort (13), who were willing to undergo muscle biopsies prior to and following 

the intervention. While the increases in strength following training in this sub-group did 

not reach statistical significance, the changes in strength were similar to those previously 

reported in the full cohort (13) and it is therefore our contention that strength increased 

with resistance training in the current study. 

 

Study Limitations 

The training component of the current study included stationary cycling on a 

bicycle ergometer in which patients were instructed to exercise at a high intensity for 

periods not exceeding two minutes. The short duration at high intensity was designed to 

maximize muscle strengthening and to minimize aerobic training. Nevertheless, it is 

possible, though considered unlikely, that the increases observed in 2OV& peak and muscle 

oxidative capacity that were observed in the current study could be the result of an 

aerobic training stimulus from the cycle exercise. 
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Conclusions 

Circuit RT in CHF patients resulted in improvements in 2OV& peak and that this 

alteration was likely due to an increase in MAPR and alterations in capillary density.   

The increases in 2OV& peak were strongly related to increased skeletal muscle oxidative 

capacity and lactate threshold. The former mechanism has not been previously described, 

and may be an important mechanism explaining the exercise training adaptations in these 

patients.   

 

The increased skeletal muscle blood flow from resistance exercise training was 

associated with increased muscle capillarisation that is probably associated with 

increased muscle fibre size. It would also seem that mitochondrial ATP production is a 

strong predictor of aerobic capacity in heart failure patients and is favorably altered by a 

program of predominantly muscle strengthening exercise. 
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Figure 1. The relationship between changes in 2OV& peak and skeletal muscle oxidative 

capacity over the 3 month exercise training intervention (RT = Resistance Training; C = 

Control; MAPR = Mitochondrial ATP Production Rate using substrates indicative of 

carbohydrate metabolism). 
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Table 1: Descriptive characteristics of CHF patients (mean ± SD) 

Characteristic RT group 

 (n = 7) 

Control group 

(n = 6) 

P value 

Age, yr 67 ± 9 (64 ± 10) 74 ± 4 (66 ± 9) 0.09 

Weight (kg) 88 ± 19 (80 ± 15) 80 ± 18 (80 ± 14) 0.44 

Body Mass Index (kg/m2) 30 ± 6 (30 ± 5) 27 ± 5 (28 ± 5) 0.32 

LVEF % 26 ± 8 (28 ± 7) 27 ± 9 (27 ± 7) 0.82 

NYHA functional class 2.4 ± 0.5 (2.3 ± 

0.5) 

2.2 ± 0.4 (2.3 ± 

0.5) 

0.34 

Etiology    

     Ischaemic heart disease 4 (57%) 11 (61%) 4 (67%) 14 

(67%) 

 

     Dilated cardiomyopathy 3 (43%) 7 (39%) 1 (17%) 6 (28%)  

     Valvular 0 1 (17%) 1 (17%)  

Medications (Pre/Post)    

Angiotensin converting 

enzyme inhibitor  

6/5 (14/13) 4/4 (16/16)  

Angiotensin receptor blocker 1/2 (3/4) 2/2 (2/3)  

Diuretic 6/6 (15/15) 6/6 (17/17)  

Beta-blocker 5/5 (7/7) 2/3 (9/10)  

Digoxin 4/4 (7/7) 3/3 (9/9)  

Aspirin 4/4 (11/11) 5/4 (12/10)  

Warfarin 3/2 (7/6) 2/3 (10/11)  

Amiodarone 0/2 (1/4) 2/2 (5/4)  

Nitrates 2/2 (4/3) 2/3 (6/7)  

Calcium channel antagonist 1/1 (1/1) 0/0 (2/2)  

Numbers in parentheses are data from the full cohort of patients



Table 2. Cardiovascular, metabolic and strength changes following 11 week intervention (mean ± SEM). 
  Training Group  Control Group  P Value 

        

  

Baseline Endpoint Baseline Endpoint Time Group X Time

   (ml.kgpeak2OV& -1.min-1) 13.8 ± 1.1 15.5 ± 0.6* 14.8 ± 1.4 13.5 ± 1.3* 0.646 0.005

   Peak RER 1.13 ± 0.07 1.15 ± 0.05 1.15 ± 0.05 1.22 ± 0.07 0.096  

  

  

    

    

  

  

  

0.298

   Peak (VE/VO2) 44.2 ± 4.0 45.0 ± 4.5 44.7 ± 3.2 47.5 ± 3.4 0.241 0.511

   Peak Workrate (W) 61 ± 9 76 ± 10 60 ± 10 58 ± 11 0.057 0.021

   Lactate threshold (W)♣ 28 ± 4 45 ± 4† 25 ± 2 28 ± 4 0.003 0.012

   Peak Lactates (mmol.L-1) ♣ 5.9 ± 0.8 6.8 ± 0.9# 4.7 ± 0.6 4.0 ± 0.6* 0.615 0.012

   Peak Heart Rate (beats/min)   111 ± 5 114 ± 4 134 ± 8 122 ± 7 0.176 0.029

Quadriceps Strength (Nm) 92 ± 16 101 ± 17 110 ± 14 111 ± 11 0.069 0.201

Hamstrings Strength (Nm) 41 ± 6 51 ± 8 49 ± 9 52 ± 11 0.057 0.323

♣NB. Training group n=6,control group n=5. *Denotes p < 0.05 vs. baseline; †Denotes p < 0.01 vs. baseline; #Denotes a trend from baseline p = 0.09 
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Table 3. Indices of muscle metabolism. Substrate combinations: pyruvate + malate (P+M, carbohydrate), palmitoyl-L-carnitine + 

malate (PC+M, fat), α-ketoglutarate (α-KG, protein), succinate + rotenone (S+R) and pyruvate + palmitoyl-L-carnitine + α-

ketoglutarate + malate (PPKM, carbohydrate, fat and protein). 

Training Group  Control Group  P Value   

         

      

Baseline Endpoint Baseline Endpoint Time Group X

Time 

MAPR (mmol ATP.min-1.kg-1 WW) 

     P+M 3.78 ± 0.76 4.91 ± 0.95* 4.79 ± 0.88 3.71 ± 0.63* 0.954  

  

  

  

  

      

  

  

  

  

0.032

     PC+M 1.83 ± 0.46 1.90 ± 0.28 2.28 ± 0.52 1.57 ± 0.37 0.304 0.215

     α-KG 3.22 ± 0.92 3.79 ± 0.61 3.49 ± 0.64 2.85 ± 0.70 0.949 0.251

     S+R 3.21 ± 0.94 4.00 ± 0.60 2.08 ± 0.59 2.75 ± 0.69 0.218 0.920

     PPKM  5.02 ± 0.99 4.89 ± 0.73 4.26 ± 0.67 4.21 ± 0.82 0.855 0.933

Metabolic Enzymes (mmol.min-1.kg-1 

WW) 
     CS 13.06 ± 1.03 18.24±1.63† 14.16 ± 0.75 15.25 ± 0.97 0.002 0.021

     HAD 12.10 ± 1.00 17.16 ± 2.61 12.95 ± 1.75 12.55 ± 1.57 0.097 0.058

     PFK 29.37 ± 1.45 29.19 ± 1.41 25.67 ± 2.24 28.80 ± 0.86 0.292 0.242

     LDH 67.1 ± 16.7 65.0 ± 14.0 50.5 ± 6.7 36.1 ± 9.2 0.124 0.241

*Denotes p < 0.05 from baseline. †Denotes p < 0.01 from baseline.  Note for HAD, PFK and LDH in the training group (n = 6) 
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Table 4. Capillarity changes following 11-week intervention. 

Training Group (n = 7) Control Group (n = 6) P Value   

        Baseline Endpoint Baseline Endpoint Time Group X Time

Capillary to fibre ratio 1.01 ± 0.05 1.17 ± 0.03* 1.15 ± 0.03 1.14 ± 0.03 0.063 0.039 

†Denotes p < 0.01 from baseline.  
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