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ABSTRACT 
 
This thesis presents investigations aimed at obtaining a system model for the 

stabilisation of an Active Magnetic Bearing (AMB) System. Furthermore, the study 

reported here set out to design both conventional and advanced controllers based on the 

system model.  

 

This research report demonstrates that the literature on AMBs shows that AMBs are 

making their mark in the industry; they are increasingly being used in applications 

including jet engines, compressors, pumps and flywheel systems.  In this study, it has 

also been observed that the basic design of AMBs is an arrangement of electromagnets 

placed equidistant in a ring round a rotor.  The point of departure for this study is that 

AMBs are highly nonlinear and inherently unstable.  Hence, the need for an automatic 

control to keep the system stabilized. 

 

The first step of the research was to determine the transfer function of the MBC 500 

magnetic bearing system both analytically and experimentally. An analytical model has 

been derived based on principle of physics. As the AMB system under analysis is 

inherently unstable, it was necessary to identify the model using a closed-loop system 

identification. Frequency response data has been collected using the two-step closed-

loop system identification. As there are resonant modes in the MBC 500 magnetic 

bearing system, the system identification approach has identified the corresponding 

resonant frequencies.  Subsequent to obtaining the model, a conventional controller was 

designed to stabilise the AMB system. Two notch filters were designed to deal with the 

magnitude and phase fluctuations around the two dominant resonant frequencies. The 
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designed conventional controller and notch filters have been implemented using 

MATLAB, SIMULINK and dSPACE DS1102 digital signal processing (DSP) card.  

Both the step response and robustness tests have demonstrated the effectiveness of the 

conventional controller and notch filters designed. 

 

A significant conclusion has been drawn when designing the conventional controller.  It 

was found that a controller that had a large positive phase angle had a negative effect on 

the system.  This finding was very significant because it restricted the controller 

specifications and yielded an optimum lead angle for the conventional controller.   

 

The advanced PD-like Fuzzy Logic Controller (FLC) has also been designed for AMB 

system stabilisation. The designed FLC can deal with the magnitude and phase 

fluctuations around resonant frequencies without using notch filters.   The performance 

of the designed FLC has been evaluated via simulation. Simulation results show that the 

FLC designed leads to a reliable system performance. Comparison studies of the FLC 

performances with two different sets of rules, two different inference methods, different 

membership functions, different t-norm and s-norm operations, and different 

defuzzification were investigated. To further improve system performance, scaling 

factors were tuned. Again, simulations showed highly promising results.  

 

Comparative studies between the conventional and advanced fuzzy control methods 

were also carried out. Advantages and disadvantages of both approaches have been 

summarised. The thesis has also suggested further research work in the control of 

AMBs. 
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1 Introduction    
 

1.1 Overview 

This chapter provides an overview of the study. It begins by introducing the research 

problem and then proceeds to the aims and objectives of this research. The organisation 

of the thesis is also outlined in this chapter. 

   

1.2 Problem Motivation   

Active Magnetic Bearings (AMBs) have been used in a rapidly growing number of 

applications such as jet engines, compressors, pumps, and flywheel systems that are 

required to meet high speed, low vibration, zero friction wear and clean environment 

specifications (Polajzer, Dolinar et al. 1999; Motee and Queiroz 2002). However, 

AMBs are highly nonlinear and inherently unstable. Therefore, it is necessary to use 

automatic control to keep the system stabilised. Conventional control methods ranging 

from Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) to 

advanced control methods such as Q-parameterisation (Mohamed and Busch-Vishniac 

1995); μ synthesis (Nonami and Ito 1996); adaptive control (Lun, Coppola et al. 1996); 

H ∞ control (Shiau, Sheu et al. 1997); LMI Control (Hong, Langari et al. 1997); neural 

network control (Komori, Kumamoto et al. 1998) and hybrid neural fuzzy control 

(Hajjaji and Ouladsine 2001) have been employed to control the natural instability of 

these bearings. However, the nonlinearities limit control effectiveness and the region of 

stable performance (Hung 1995). Much of the control of magnetic bearings literature 

(Humphris, Kelm et al. 1986; Fujita, Matsumura et al. 1990) concentrates on techniques 
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based on the linearised dynamic model obtained at its equilibrium point, while other 

approaches using nonlinear control techniques, such as sliding mode and feedback 

linearisation, have also been proposed (Rundell, Drakunov et al. 1996; Torres, Ramirez 

et al. 1999; Lindlau and Knospe 2002; Chen and Knospe 2005). The nonlinear control 

approaches provide better performance than the controllers which are designed based on 

the linearised model.  

 

1.3 Problem Statement 

This study investigated both conventional and advanced control methods for AMB 

system stabilisation. The intent of this research study was twofold and was intimately 

connected to continuing the approach of the AMB system control. Firstly, this research 

was designed to identify dynamic AMB system models. The second intent of this work 

was to design both conventional and advanced controllers for magnetic bearing systems. 

As the active magnetic bearings are highly nonlinear and inherently unstable, a 

controller has to be designed to keep the AMB system stable. Motivated by the 

capabilities to overcome the nonlinearities problem, fuzzy logic has been introduced to 

control magnetic bearing system (Shuliang 2001). Fuzzy logic theory was firstly 

introduced by Zadeh (1965). Fuzzy logic has been used in many areas and has been 

proved to be very effective in many control applications in this research. The nonlinear 

fuzzy logic controller was designed for the AMB system stabilisation. The fuzzy logic 

approach was chosen to compensate for magnetic nonlinearities and to enhance the 

performance of the magnetic bearing control system.   
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1.4 The Objectives of the Research 

The aim of this research was to identify a system model and design both the 

conventional and advanced controllers for an AMB system in order to stabilise the 

system and to maximise the capabilities of the magnetic bearing system. The first phase 

of this research involved identifying the AMB system model using both the analytical 

method and the system identification approach. The second phase involved the 

implementation of the designed conventional controller. The last phase involved fuzzy 

logic controller design and simulation. Comparative studies of the conventional and 

advanced fuzzy logic controller for AMB system by evaluating controller performance 

via simulation were also done.  

 

1.5 The Structure of the Thesis 

This thesis consists of seven chapters. The other six chapters are organised as follows. 

In chapter 2, some background materials that are directly related to this research are 

reviewed. Firstly, the active magnetic bearings are described and their advantages and 

disadvantages are discussed. Different control methods for stabilising AMB systems are 

then summarised. Finally, the three main steps in model identification: data acquisition, 

parameter estimation, and model validation are explained at the end of this chapter. 

A detailed description of the model identification is presented in Chapter 3. An 

analytical model derivation is firstly reviewed. This provides basic knowledge on the 

AMB system rigid body model and bending body model. This is then followed by 

system identification which includes data acquisition and parameter estimation.  
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In chapter 4 an account of the design of notch filters based on the resonant frequencies 

identified in the previous chapter is provided. Furthermore, here the design and 

implementation of the conventional controller based on the model derived in chapter 3 

is reported.  

 

Fuzzy Logic theory and Fuzzy Logic Controller (FLC) structures with two different 

fuzzy inference methods are introduced at the beginning of chapter 5. These inference 

methods are Mamdani and Sugeno-Type fuzzy inference methods. PD-like FLC is then 

designed for the AMB system stabilisation. The performance of the designed PD-like 

FLC has been evaluated via simulation. Different fuzzy inference methods, different 

membership functions, different AND methods, different OR methods, and different 

implication methods have been investigated in order to find the best FLC.  Comparative 

studies of the designed conventional and the advanced PD-like FLC for AMB system 

stabilisation evaluated via controller performance simulation are reported in Chapter 6. 

Finally, Chapter 7 presents the general conclusions by bringing together the preceding 

chapters. This chapter also examines the extent to which the objectives have been 

achieved; presents some directions for future research and development and other 

related work. In regards to appendices, Appendix A shows the program used for 

preparing data for system identification, while Appendix B provides the frequency 

response data collected for channel 2 of the MBC 500 magnetic bearing system for the 

purposes of system identification.  Appendix C describes the ‘c2dm’ function, which 

converts continuous linear time-invariant systems to discrete time.  
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2 A Review on Active Magnetic Bearings and Control 
Techniques 

 

2.1 Overview 

This chapter provides a brief description of active magnetic bearing (AMB) system and 

its advantages. This is followed by a review of the control methods for stabilising the 

magnetic bearing system.  

 

2.2 Active Magnetic Bearing 

AMBs have been used in a rapidly growing number of applications in industry as an 

alternative to conventional mechanical bearings. AMBs offer several significant 

advantages over conventional bearings due to their non-contact operation, which can 

reduce the losses.  AMB systems have other unique abilities such as: high rotor speed, 

non friction motion, weight reduction, precise position control, active damping and 

ability to operate under environmental constraints that prohibit the use of lubricants 

(Polajzer, Dolinar et al. 1999; Motee and Queiroz 2002).  

AMBs are required to meet high speed, low vibration, zero friction, and clean 

environment specifications. The system has to have good transient response in terms of 

settling time, rise time, overshoot and steady state error. A controller with robustness to 

uncertainty and capable of adjusting itself according to the rotor speed is essential 

(Zhang, Lin et al. 2002).  
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However, unlike conventional bearings, magnetic bearings are highly nonlinear and 

inherently unstable. The non-linearity of the active magnetic bearing system is due to 

the relationship between forces that are generated in the electromagnetic actuator, the 

coil’s current and the air gap between the rotor and the stator. These nonlinearities limit 

control effectiveness and the region of stable performance (Hung 1995).  The open loop 

unstable characteristic of the magnetic bearings requires feedback control to ensure the 

normal operation of AMB systems (Habib and Hussain 2003). 

 

2.3 Control Methods for Active Magnetic Bearings 

As mentioned in the previous section, magnetic bearings require feedback control in 

order to overcome their instability.  Both conventional control methods and advanced 

control methods have been applied to designing control systems for magnetic bearings. 

These design techniques are reviewed below.  

 

 PD and PID Control 

PD control for magnetic bearing is natural because the proportional feedback manifests 

itself simply as mechanical stiffness and the differential feedback coefficient as 

mechanical damping (Bleuler, Gahler et al. 1994). There is a sharp rise in the stiffness 

to static load change when adding an integral (I) term. Several PD control algorithms 

for controlling magnetic bearings have also been applied by some researchers (Allaire, 

Lewis et al. 1983; Humphris, Kelm et al. 1986; Keith, Williams et al. 1988). It has been 

presented by the above researchers that proportional feedback control can increase the 

critical speed or resonant frequency of the system of a single mass rotor on rigid support 

while reducing the damping ratio. Furthermore, derivative feedback control of the 
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system can reduce vibration amplitudes and flatten the response peaks at its critical 

speeds (Allaire, Lewis et al. 1981). Other experts have also obtained similar results for 

rotors on flexible supports with the control forces exerted at the bearing locations rather 

than at the rotor mass location (Allaire, Lewis et al. 1983). It is doubtless that the PD 

type controller is simple to implement, nevertheless magnetic bearing system’s 

uncertainties and nonlinearities can result in difficulties of restricting the performance 

of AMBs to a small region and limiting the control effectiveness (Hartavi, Ustun et al. 

2003).  

 

A Proportional-Integral-Derivative (PID) controller offers a better solution to this 

problem as the PID controller has a simple structure and provides robust performance in 

a wide range of system operating conditions (Petrov, Ganchev et al. 2002). Hartavi, 

Ustun & Tuncay (2003) have employed the PID type controller technique and they have 

found that this method can overcome instability problems of the AMB system. 

However, magnetic bearings have electric power loss due to the direct current flow in 

the exciting coil. To reduce these losses, Sato & Tanno (1993) adopted the pulse width 

modulation (PWM) types of amplifiers with decreased switching frequency of the 

control voltage.  Sato & Tanno (1993) have derived the transfer function of the 

magnetic bearing model and designed a PID controller to stabilise the rotor.  A 

discontinuous controller with a hysteresis band was introduced in order to reduce the 

switching times and reduce the switching power. However, Williams, Joseph & Allaire 

(1990) have found that the resultant PID controller presents very poor damping at low 

frequencies. These controllers do not work well for nonlinear systems, namely, higher 

order and/or time delayed linear systems and particularly complex or vague systems that 
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have no precise mathematical models (Tokat, Eksin et al. 2003). Habib & Hussain 

(2004) have also discovered that PID controllers become ineffective when the machine 

is operated in highly nonlinear regions.     

 

 

 Q-parameterisation method 

The Q-parameterisation theory was used to design a controller for magnetic bearings 

with radials and thrust controls to stabilise the bearings and achieve the desired 

robustness and performance goals.  

 

Design requirements for the Q-parameterisation method were described and then 

formulated as constraints on the controller which was parameterised by a dynamic 

system Q. In addition, the design problem was satisfied by selecting controller 

parameters so that all design requirements were met. This design problem was solved 

using Console, a CAD tandem for optimisation-based design developed at the 

University of Maryland in 1987. Digital simulation was implemented to verify the 

proposed methods (Mohamed and Emad 1992). 

 

The Q-parameterisation theory has also been utilised to design controllers in order to 

solve the imbalance problem in the magnetic bearing system. The imbalance problem 

can be solved with two methods utilising feedback control. The first method is by 

compensating for the unbalanced forces with generated electromagnetic forces which 

cancel the unbalanced forces. The second method is by making the rotor spin around its 

axis of inertia or automatic balancing without generating unbalanced forces. The Q-
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parameterisation is simply a solution with a set of linear equations. In addition, the 

controller Q-parameter was chosen by considering performance specifications and 

robustness to model uncertainties. Both the imbalance compensation and automatic 

balancing can be done at certain rotational speed. If the rotational speed changes then 

the controller parameters must be varied (Mohamed and Busch-Vishniac 1995).     

 H∞ control using closed loop shaping 

Another control design technique that has been applied for the magnetic bearing system 

is the H∞ control theory using closed loop shaping. The important requirement in 

practical magnetic bearing systems is to keep the stiffness of the controlled mechanical 

parts not below a given value for all relevant frequencies.  The requirement is a wide-

band disturbance attenuation problem in an H∞ setting. This approach is especially 

appropriate for applications with the worst case exciting frequency of disturbance 

forces. Rutland, Keogh & Burrows (1995) implemented the H∞ optimisation method 

for a magnetic bearing system with a flexible rotor by designing robust controllers. The 

important goal in the design was to prevent actuator saturation in the presence of 

disturbances and mass loss of the rotor. By selecting input and output weightings 

appropriately, a compromise is achieved between transient control forces and vibration 

levels. The mass loss simulation result showed the avoidance of saturation during 

transient condition. This transient condition is important in order to ensure the system 

remains linear. Another important point in the design is that the weighting function 

must be normalised in order to enable the optimisation problem to achieve desired 

performance level. If the mass loss is greater than the levels accounted for in this 

design, then bearing saturation may still occur (Rutland, Keogh et al. 1995).  
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Jiang & Zmood (1995) have also examined the application of H∞ control theory to 

ensure both system and external periodic disturbance rejection robustness for magnetic 

bearing systems.   

 

  

 H∞ control using open loop shaping and normalised left coprime factorisation 

description 

Another type of H∞ control method for magnetic bearing control utilises loop shaping 

and normalised left coprime factorisation description. McFarland & Glover (1998) have 

developed the unique H∞ optimisation method using what is called the normalised left 

coprime factorisation (LCF) plant description. An optimal solution without repetition 

has been obtained by using the normalised LCF robust stabilisation. This iteration 

process is essential in common H∞ optimisation problems.  

 

Continuing the earlier experiment, McFarland & Glover then recommended a controller 

design procedure using open loop shaping particularly the loop shaping design 

procedure (LSDP) (McFarlane and Glover 1992). Fujita, Hatake & Matsumura (1993) 

then implemented this method to control the magnetic bearing system. Based on 

shaping the open loop properly, robust stability and good performance are achieved. 

The experiment results showed that LSDP provide a practical H∞ design methodology. 

 

The LSDP H∞ controller result consists of two parts: a central controller and a free 

dynamic parameter Φ. An expert explored thoroughly the free parameter so that 

synchronous disturbances within some bandwidth can be actively rejected. Therefore, 



C h a p t e r 2 A Review on Active Magnetic Bearings and Control Techniques 

  

 

 11

The LSDP H∞ contaroller can guarantee robust stability and other system 

performances. Gain scheduling was also implemented in order to reject synchronous 

disturbances at various frequencies (Matsumura, Namerikawa et al. 1996). 

 

 µ-synthesis 

µ-synthesis controller design method deals with structured uncertainties. It is likely that 

the resultant controller is less conservative than H∞ controllers. The reason for this is 

that µ-synthesis control considers structured uncertainties. Nanomi & Ito (1996) 

designed and implemented the µ-synthesis controller for magnetic bearing systems with 

a flexible rotor. The result of the experiments showed that the µ- synthesis controller 

exhibits significantly greater robustness of mass variations than that of H∞ controllers. 

However, Fujita, Matsumura & Namerikawa (1992) observed that the performance of 

the µ-synthesis and the H∞ controller were almost the same.  Furthermore, Losch, 

Gahler & Herzog (1998) have also designed a µ-synthesis controller with a 3 MW pump 

for the magnetic bearing system. For purposes of determining a suitable weighting 

function, a new theorem was introduced. The theorem expressed the important point in 

designing the µ-synthesis controllers, that is, there are three important points: size of the 

model uncertainty, system limitations, and performance goals.  Moreover, the 

MATLAB D-K iteration script dkit.m was implemented in order to calculate the 

controller parameters (Balas, Doyle et al. 1995).  It is obvious that in order to ensure the 

resultant µ-synthesis controller has good performance, the structured uncertainty model 

needs to be constructed carefully.  

 

Namerikawa, Fujita & Matrumura (1998) have investigated three problems for magnetic 
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bearing systems. The problems are in the areas of the parameter uncertainties, 

unmodeled dynamics, and linearisation error. The uncertainties structure was described 

by real/complex numbers/matrices. The results showed good performance of proposed 

µ-synthesis design using the uncertainty model.  Lastly, Fittro & Knospe (1998) have 

implemented a multivariable µ-synthesis controller for a 32000 rpm, 67.1 kW machine 

spindle with magnetic bearings. Furthermore, Fittro & Knospe (1998) also designed and 

implemented an optimal decentralised PID controller. Both theoretical and experimental 

results exhibited significant improvements in the µ-synthesis control design 

performance.  

 

 Sliding mode control 

The sliding mode control is one of the nonlinear methods for controlling magnetic 

bearing in order to overcome parameter uncertainties and reject disturbances to achieve 

robust performance. 

Tian & Nonami (1994) have experimented with this design. They applied the discrete 

time sliding mode control on the magnetic bearing system with a flexible rotor. The 

experiments exhibited that the sliding mode control method implemented could increase 

the rotor speed up to 40,000 rpm without unstable vibrations. This experiment could not 

be achieved by implementing the PID controller. For the sliding mode control 

experimental implementation, a TMS320c30 based DSP controller was used. 

 

Rundell, Drakunov & Decarlo (1996) designed and implemented a continuous time 

sliding mode observer and controller for magnetic bearings by stabilising the rotational 

motion of its vertical shaft. In this technique, a sliding mode observer was designed for 
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state and disturbance estimation, and a sliding mode controller was constructed for 

driving the system to a specified manifold and maintaining it there. The simulation 

results showed that the proposed technique enables the system to achieve good 

robustness.  

 Feedback Linearisation 

Research on nonlinear systems demonstrates that under certain conditions the nonlinear 

system can be linearised with feedback. This is an important point for designing 

magnetic bearing control systems as stabilisation is required for a wide range of 

operating conditions. However, the robust performance of the control system is 

guaranteed only for small rotor displacements (Ishidori 1987).  

 

The feedback linearisation method has been used for designing nonlinear controllers for 

a number of magnetic bearing systems (Hung 1991; Lin and Gau 1997; Trumper, Olson 

et al. 1997; Namerikawa, Fujita et al. 1998). 

 

 Backstepping approach 

The integrator backstepping (IB) control method has received a great deal of attention in 

the last decade as this method provides the framework for attacking many 

electromechanical control problems including AMB (Krstic, Kanellakopoulos et al. 

1995). 

One of the main benefits of the IB design method is the proviso for systematic desirable 

modifications of control structures such as compensation for parametric uncertainty or 

eliminating state measurements. Furthermore, an adaptive controller designed using IB 

technique for a simplified magnetic bearing control was introduced by Krstic, 
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Kanellakopoulos & Kokotovic (1995). However, what enabled the use of an IB 

approach was the structure of the magnetic bearing dynamics  (Krstic, Kanellakopoulos 

et al. 1995). De Queiroz & Dawson (1996) have implemented a backstepping-type 

controller for magnetic bearing systems utilising a nonlinear model of the planar rotor 

disk AMB. The magnetic bearing depended on a general flux linkage model. The 

controller requires the measurement of the rotor position, rotor velocity, and stator 

current for purposes of achieving global exponential rotor position tracking. Simulation 

is used to illustrate the performance of the controller.  

 

 Neural network control 

There are a few research reports on the neural network application in designing 

controllers for magnetic bearing systems. Bleuler, Diez, Lauber, Meyer & Zlatnik 

(1990) have designed and implemented a neural network controller for controlling an 

electromagnet that was used to levitate an iron ball. The experiment showed that a 

nonlinear ANN (Artificial Neural Networks) controller’s performance was much better 

than that of linear controllers for a typical unstable plant with strong nonlinearities. 

 

In 1998, Paul, Hofmann & Steffani (1998) did some investigations using MLP-network 

to compensate unbalances at magnetic bearings. The TMS 320c40 DSP was used for 

controller implementation.     

 

 Fuzzy Logic Control (FLC) 

Fuzzy logic was first introduced in 1965 by Professor L.A. Zadeh, University of 

California Berkeley, US, in his paper “Fuzzy Sets” which was published in an academic 
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journal “Information and Control” (Liu and Lewis 1993).  Although Zadeh initially 

expected his fuzzy logic idea to be applied in large organisational system design and 

social sciences, most of the applications have been developed in engineering and system 

control. Even though the fuzzy logic theory was firstly introduced in the USA, it has 

developed more rapidly in terms of technology and applications in Japan. For example, 

OMRON, one of Japan’s industrial pioneers in this area, began to study about fuzzy 

theory and its application in 1984 and then many kinds of fuzzy control-based products 

have been developed and many patents have been granted (more than 1000 in Japan and 

over 40 in USA) (Reznik 1997). 

 

Since Zadeh’s innovation, fuzzy theory has been applied to various fields. The early 

applications were mainly in the engineering fields (Mukaidono 2001). According to 

(Passino and Yurkovich 1998; Mukaidono 2001), the application of fuzzy logic has 

been in the following.: 

• Aircraft/spacecraft: flight control, engine control, avionic systems, failure 

diagnosis, navigation and satellite attitude control. 

• Automated highway systems: automatic steering, braking, and throttle control 

for vehicles, traffic control, elevator, trains and cranes. 

• Automobiles: brakes, transmission, suspension and engine control. 

• Autonomous vehicles: ground and underwater. 

• Manufacturing systems: scheduling and deposition process control. 

• Power industry: motor control, power control/distribution and load estimation. 

•  Process control: temperature, pressure and level control, failure diagnosis, 

distillation column control, and desalination process. 
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• Robotics: position control and path planning. 

• Consumer products: washing machines, microwave ovens, rice cookers, vacuum 

cleaners, camcoders, TVs and VCRs, thermal rugs and word translators. 

• Software: medical diagnosis, security, data compression. 

 

Fuzzy logic controllers have been designed and implemented for active magnetic 

bearing systems for modelling and control purposes.  

 

Hung (Hung 1995) used the principles of fuzzy theory to compensate the magnetic 

nonlinearities in order to improve the system performance. Kosaki, Sano & Tanaka 

(1997) have designed a model-based fuzzy controller for magnetic bearing systems. The 

performance of the fuzzy logic controller was verified via simulation.  Furthermore, 

Hong, Langari & Joh (1997) implemented Sugeno-Kang (TSK) fuzzy model for 

modelling magnetic bearings. Based on the TSK fuzzy model, nonlinear fuzzy 

controllers were derived by means of a systematic synthesis approach. Finally, 

simulation was used to illustrate that the implementation of a fuzzy controller not only 

maximised the stability boundary but also achieved better performance than a linear 

controller, a simulation was used. 

  

In 1995, Yang used the fuzzy logic approach to the synthesis of synchronisation control 

for a suspended rotor system. The synchronisation control enables a whirling rotor to 

experience the synchronous motion along the magnetic bearing axes, thereby avoiding 

the gyroscopic effects that degrade the stability of the rotor system when spinning at 

high speed. Simulation results demonstrated the performance of the fuzzy logic 
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controller.   

 

Based on all the control techniques reviewed above, much of the literature concerns the 

control of magnetic bearings concentrates on techniques based on the linearised 

dynamic model of the magnetic bearing system (Humphris, Kelm et al. 1986; Fujita, 

Matsumura et al. 1990). However, these methods are only effective in limited nominal 

design conditions. The linear control performs well when the position of the rotor is 

close to the designed operating condition, but it drops quickly outside of the operating 

point (Hung 1995). Furthermore, linear optimal control techniques also focus on 

linearising the dynamics of the magnetic bearing systems about the bearing centre at 

nominal speed, which affords opportunities for the linear quadratic Gaussian optimal 

control (Smith and Weldon 1995).  Meanwhile, approaches using nonlinear control 

techniques provide better performance than the controllers designed based on the 

linearised model. However, the nonlinear control theory is generally complicated 

compared to the linear control.  Finding solutions to nonlinear equations is quite 

daunting. Even though the system can be precisely described, it is not always possible 

to find a nonlinear solution that enables achieving a stable closed loop system.  

 

Drawing on the various studies, both conventional PD controllers and fuzzy logic 

controllers have been considered as potential solutions for stabilising the active 

magnetic bearing in this research.  
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2.4 Summary 

This chapter has provided a brief description of the active magnetic bearing (AMB) 

system and its advantages. The description has been followed by a review of the 

literature on control methods for stabilising the magnetic bearing system. Modeling and 

system identification of the MBC500 will be described in the next chapter. 



C h a p t e r 3 Modeling and System Identification of the MBC 500 Magnetic Bearing System  

  

 

 19

3 Modeling and System Identification of the MBC 500 
Magnetic Bearing System 

 

3.1 Overview  

This chapter firstly provides information on the MBC 500 magnetic bearing system 

parameters. The analytical model of the MBC 500 magnetic bearing system draws on 

principles of physics. Both the rigid body model and bending body model are described. 

Finally, system identification which includes data acquisition and parameter estimation 

is presented. 

 

3.2 The MBC 500 System Parameters 

The device for this research is the MBC 500 magnetic bearing system. The MBC 500 

consists of two active radial magnetic bearings and a supported rotor mounted on top of 

an anodized aluminium case (Magnetic Moments 1995). See Figure 3.1 below.  

 

 

 

 

 

 

 
Figure 3.1 MBC 500 magnetic bearing research experiment 
Source: (Magnetic Moments 1995) 
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The shaft is actively positioned in the radial directions at the shaft ends. It has 4 degrees 

of freedom and it is passively centered in the axial direction. Moreover, it freely rotates 

about its axis. The magnetic bearing system includes four linear current amplifier pairs 

and one pair for each radial bearing axis. In addition, it  also includes four internal lead-

lag compensators which independently control the radial bearing axis (Magnetic 

Moments 1995).  

In addition, the front panel of the MBC 500 magnetic bearing system (shown in Figure 

3.2) is a graphical representation of the system dynamics of the MBC 500. The panel 

contains 12 BNC connections for easy access to the systems with four inputs and eight 

outputs. Moreover, there are four switches in the feedback loops. These switches allow 

the user to open the loop for the internal controllers independently. If only one loop is 

switched off, the user can perform single-input single-output (SISO) control design 

experiments (Magnetic Moments 1995).  

 

Figure 3.2 Front panel block diagram of MBC 500 
Source: (Magnetic Moments 1995) 
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All the information in this section about the MBC 500 system parameters has been 

directly taken from the MBC 500 Magnetic Bearing System Operating Instruction 

Manual (Magnetic Moments 1995). This section describes the blocks given on the front 

panel of the MBC 500 magnetic bearing system in greater detail. These models given 

below are nominal and serve as a guide only. The shaft’s schematic showing 

electromagnets and Hall-effect sensors, is provided in Figure 3.3 below.  

 

Figure 3.3 Shaft schematic showing electromagnets and Hall-effect sensors 
Source: (Magnetic Moments 1995)  

 
 
• Shaft parameters 

The shaft on the MBC 500 is made from non-magnetic 303 stainless steel with a 

modulus of elasticity 28 x 106 psi, density 0.29 lb/in3, diameter 0.490 inches 

(1.2446cm), and length 10.6 inches (26.924 cm). The bearings are centred 0.95 inches 

(2.413 cm) from the shaft ends, and the Hall sensors are centred 0.11 inches (0.2794 

cm) from the shaft ends (Magnetic Moments 1995).   
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• Bearing parameters 

The bearing coils have a 0.5 Amp bias upon which a control signal is superimposed. 

The force applied by a single horseshoe electromagnet can be determined by the 

formula: 

F = k(icontrol + 0.5)2/g2 (Magnetic Moments 1995)......................................................... 3.1 

 
 
Where k = 2.8 x 10-7 Nm2/A2, icontrol

 is the control current supplied by the current 

amplifier in addition to the 0.5A bias current, and g is the air gap in meters. The bias 

current in opposing electromagnets has an opposite sign and when the control current is 

added to both coils, the net force generated by opposing electromagnets can be 

calculated as (Magnetic Moments 1995): 

2
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...................................................... 3.2 
 
Where x1 is the displacement of the shaft inside the left bearing of Figure 3.3. The same 

expression holds for bearing 2 and the y forces as well.  

 

• Amplifier Model 

The current amplifier model has a simple first order response. Each of the four current 

amps is described by the formula(Magnetic Moments 1995) : 

controlscontrol VvoltAi ×= −×+
/

)102.21(
25.0

4 ............................... 3.3 
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• Compensator Model 

The nominal compensator model is derived from the circuit schematic and relates 

controlV to senseV by the following transfer function (Magnetic Moments 1995): 

 

sensess
s

control VV
)102.21)(103.31(

)109.81(41.1
54

4

−−

−

×+×+

×+=
............................. 3.4 

 

This compensator can be implemented in an external controller, but time needs to be 

considered in tuning the controller due to the nonlinear unstable system.  

 

• Sensor Nonlinearity 

The displacements sensed by the two opposing Hall-effect sensors shown in Figure 3.3 

are combined electronically to yield the following relationship between shaft end 

displacements X1, X2, Y1, or Y2. Expressed in terms of X1, we approximately have: 

 

Vsense = 5 Volts/mmX1 + 24 Volts/mm3 X1
3 ± 1 Volt offset. 

 

Vsense is available on the front panel via the sensor output BNC connector.  

Since the magnetic bearing system is inherently unstable, it is necessary to use 

automatic control to keep the system stabilised. To stabilise the system, the position of 

the rotor needs to be sensed and the controller must control the amount of current onto 

the magnets.  
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3.3 Analytical Model of the Magnetic Bearing System 

Morse, Smith & Paden (1996) provide the details for the derivation of the analytical 

model of the MBC 500 magnetic system. This section provides a brief review of the 

analytical model found based on the physical laws of active magnetic bearing.  

 

Analytical Model Derivation 

An analytical model is needed in model based control system design. The physics 

governing the AMB can be described by differential equations, which represent the 

motion of the AMB in response to certain input signals. This will be in the form of a 

state space model.  A “state-space” model of the system keeps the form of: 

BuAx +=χ .................................................................................................................. 3.5 
DuCxy += .................................................................................................................. 3.6 

 
Where x is the state vector, u is the system input vector and y is the system output. The 

A, B, C and D matrices describe the system mathematically.  

 

For the MBC 500 system, the analytical derivation is broken into two parts: ‘Rigid 

Body’ and “Bending Body’. When the system acts as a ‘Rigid Body’ it means that it 

remains completely inflexible. When the system acts as a ‘Bending Body’ it means that 

it is flexible in rotor motion. Then, MATLAB will be used to compile the models and 

determine the characteristics (Morse, Smith et al. 1995). A diagram of the MBC 500 

system configuration is shown in Figure 3.4.  
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Figure 3.4 MBC 500 system configuration 
Source: (Morse, Smith et al. 1995) 

 

This MBC 500 system contains a stainless steel shaft or rotor. The rotor or a stainless 

steel shaft can levitate using eight “horseshoe” electromagnets with four at each of the 

rotor. Hall effect sensors placed just outside of the electromagnets at each end of the 

rotor measure the rotor end displacement. The rotor movement is controlled in four 

degrees of freedom. This four degrees of freedom are broken into two translational 

degrees, including translation in the horizontal direction, 1x and 2x , perpendicular to the 

z  axis, and translation in the vertical direction, 1y and 2y . Also included in the MBC 

500 are four on-board controllers which levitate the bearing when the controllers are 

connected in feedback. There are also four switches on the front panel of the MBC 500 

to disconnect each of the controllers so that any one or all of them can be replaced by an 

external controller (Morse, Smith et al. 1995).     

  

Rigid Body Model 

The first analysis of the system assumes that the rotor acts as a rigid body. The 

definition of a rigid body is that the rotor does not change shape, which implies that the 

rotor does not bend but experiences only transitional or rotational motion. Moreover, 

the horizontal and vertical dynamics, i.e. the x  and y directions, are uncoupled. The 
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effects of coupling cannot be ignored if the rotor were spinning or if the actuators or 

sensors were misaligned. Theoretically, the system operates identically in the x and y 

directions if their dynamics are uncoupled. However, the additional constant force of 

gravity acts in the y direction. The force is non-linear, consequently it cannot be 

modeled by a linear system model. For this reason, the analysis of the gravity effect in 

the linear y direction is neglected. As mentioned earlier, that the x and y directions are 

identical, the derivation is focused on the horizontal or x direction motion. The system 

configuration is shown in Figure 3.5, while the parameters are defined in Table 3.1 and 

the system variables are described in Table 3.2 (Morse, Smith et al. 1995).  

 

Figure 3.5 Rotor configuration  
Source: (Magnetic Moments 1995) 

Symbol Description 

x0 The horizontal displacements of the centre of mass of the rotor 

x1 and x2 
The horizontal displacements of the rotor at left and right bearing 
positions, respectively 

X1 and X2 
The horizontal displacements of the rotor at left and right Hall-
effect sensor positions, respectively 

ө The angle that the long axis of the rotor makes with the z axis 

F1 and F2 
The forces exerted on the rotor by left and right bearings, 
respectively 

Table 3.1 System variables  
Source: (Magnetic Moments 1995) 
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Symbol Description Value 

L Total length of the rotor 0.269 m 
l Distance from each bearing to the end of the rotor 0.024 m 

l2 
Distance from Hall-effect sensor to the end of the 
rotor 0.0028 m 

I0  

Moment of inertia of the rotor with respect to 
rotation about an axis in the y direction 

1.5884 × 10-3 
kgm2 

M Mass of the rotor 0.269 kg 
Table 3.2 System parameters  
Source: (Magnetic Moments 1995) 

 

To translate the rotor nominal position, that is, the desired rotor position corresponds to 

01 =x  and 02 =x  or equivalently 01 =X and 02 =X or 00 =x  and 0=θ . The rotor 

will be centered horizontally with respect to the front and back electromagnets on each 

end, and its long axis is parallel to the z axis. In addition, the rotor end displacements 

are expressed as shown below (Morse, Smith et al. 1995):  

θsin)( 201 lxx L −−= ..................................................................................................... 3.7 
θsin)( 202 lxx L −+= .................................................................................................... 3.8 
θsin)( 2201 lxX L −−= .................................................................................................. 3.9 
θsin)( 2202 lxX L −+= ............................................................................................... 3.10 

 

Assume that θ  is small, this is a valid assumption considering the physical dimension 

of the system. The first order approximations are: sin θθ ≅  and cos 1≅θ .  

Newton’s law is used to find the equations of motion for rigid body mechanical 

systems. In addition, the force balance equation is used for the rotor analysis as shown 

2
0 12

1 mLI =
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below (Morse, Smith et al. 1995):  

→→

=∑ amF .................................................................................................................. 3.11 
 

where ∑
→

F  is the summation of all external forces applied to the system, m is the rotor 

mass, and 
→

a is the acceleration of the centre of gravity of the system.  

The moment balance can be expressed as: 

→→

=∑ αIM .................................................................................................................. 3.12 
 

where ∑
→

M  is the summation of all moments applied externally to the system, I is the 

rotational moment of inertia of the system about the axis through the centre of gravity 

and in the direction of rotation, and 
→

α is the angular acceleration of the system.  

The moments and forces are interrelated as shown in the following equation: 

→→→

= FxrM ................................................................................................................... 3.13 
 

where 
→

r is any vector pointing from point 0 to the line of application of the force 
→

F . 

This relationship is shown pictorially in Figure 3.6a below.   

 

However, if the vector 
→

r is chosen to be perpendicular to the line of application of the 

force 
→

F as shown in Figure 3.6b, then the above equation reduces to 

M=rF ........................................................................................................................... 3.14 
 

 

 



C h a p t e r 3 Modeling and System Identification of the MBC 500 Magnetic Bearing System  

  

 

 29

As can be seen in Figure 3.6, the sense of the moment is counter-clockwise. From the 

force and moment balance equations above, the non-linear differential equations can be 

derived governing the rigid body motion as shown in Figure 3.5 above. The motion is 

only in one plane which is the x  direction. The equations of motion are shown below: 

210 FFxmF +==
⋅⋅

∑ ................................................................................................. 3.15 

θθθ cos)(cos)( 21220 lFlFIM LL −−−==
⋅⋅

∑ ........................................................... 3.16 

 

Figure 3.6a Figure 3.6b 

Figure 3.6 Force/Moment relationships  
Source: (Morse, Smith et al. 1995) 

 

 

All the above differential equations, system parameters and variables have been used in 

order to determine a suitable model for the rigid body system. This useful information 

was obtained through doing a series of exercises set in the MBC500 manual. The final 

result took the form of a two-input, two-output state space representation in the form: 
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where rA , rB  and rC are the state space matrices for the rigid body case. From this 

result, the system response has been determined.  

 

The manual of MBC 500 provides the following nominal transfer function for each of 

the on-board controllers:  

iii sensesensecontrol VsCV
ss

sV )(
)102.21)(103.31(

)109.81(41.1
54

4

=
×+×+

×+
= −−

−

............................... 3.19 

 

For the controller design, the controller )(1 sCx is replaced by mapping 1senseV to 1controlV . 

The system seen by the controller is as shown in Figure3.7. However, because of the 

rigid body is a simplified version in that the x and y rotor motion are uncoupled, an 

equivalent system configuration is shown in Figure 3.8.  
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Figure 3.7 Bearing system seen by controller xCx −1  and y directions coupled  

Source: (Morse, Smith et al. 1995) 
 

 

Figure 3.8 Bearing system seen by controller xCx −1  and y directions uncoupled 
     Source: (Morse, Smith et al. 1995) 

 

In order to obtain the analytical model for the rigid body system to be controlled, the 

controllers )(2 sCx , )(1 sCy and )(2 sCy must be included in the feedback as shown in 

Figure 3.7. Specific commands in MATLAB can convert the controller model C(s) to a 

state space model. This state space model has controller matrices acont, bcont, ccont 

and dcont representing the on-board controllers.  

From the equation 3.15, it can be obtained that: 

m
F

m
F 21

0 +=
⋅⋅

χ .............................................................................................................. 3.20 
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Since θ  is small so 1cos ≈θ  and θ  becomes: 

 

2
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1
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21
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(1)
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(1)()(
FlL

I
FlL

II
lF

I
lF LL

−+−−=
−

−
−

=
⋅⋅

θ ........................................... 3.21 

 

Meanwhile, assuming θ  is small so X1 and X2 can be simplified as follows by using the 

equations 3.5 and 3.6: 

θ)( 2201 lxX L −−= ..................................................................................................... 3.22 
θ)( 2202 lxX L −+= ..................................................................................................... 3.23 

 

All the equations above can be written in state space form with the state vector: 
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xx r  

where r means rigid body. In addition, F1 and F2 represent input variables and X1 and X2 

are output variables, the state space equations can be written as follows:  
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Clearly, it can be seen that all four eigenvalues are 0 for the state matrix.  

By implementing the first order approximation at the point (0,0) to describe the bearing 

force on the rotor: 

)0()0,0()0()0,0()0,0(),( −⎥
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i
icontroliii i
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x
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FixF .................. 3.26 

 

The ith non-linear be 

Bearing force can be expressed as (Magnetic Moments 1995): 
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where k=2.8 x 10-7 Nm2/Amp2. 

i

i

x
F
∂
∂  can be found as follows: 
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F1 and F2 can thus be expressed as: 

111 5.34375 controlixF += ..................................................................................... 3.32 

222 5.34375 controlixF += ........................................................................................ 3.33 
 

Combining equation 3.7 with equation 3.32, F1 and F2 can be expressed as follows: 

1201 5.3)(43754375 control
L ilxF +−−= θ ........................................................... 3.34 

 

Combining equation 3.8 with equation 3.33, F1 and F2 can be expressed as follows: 
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L ilxF +−+= θ ............................................................. 3.35 
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Therefore, the new state space rigid body system model including the actuator dynamics 

with 1controli and 2controli as input variables can be expressed below: 
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⎦
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Using the system parameters given in Table 3.2, the eigenvalues of the state matrix are:   

sec4.182
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sec3
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2
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As can be seen, the system is unstable because there are two positive eigenvalues.  

Another implementation of Taylor series approximation at the 0=ix  can be used to 

linearise the sensor non-linearity:  
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VXV ...................................................... 3.40 

 

Where the relationship between the voltage sensed and the rotor displacement is given 

below (Magnetic Moments, 1995):   

39 )1025(5000 iisense XXV
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i

sensei

X
V
∂

∂  can be calculated as: 
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As the result: isensei XV 5000= ..................................................................................... 3.44 
 

The output equation becomes:  
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Since the sensor transfer function is purely a gain, the eigenvalues of the system are not 

affected. Furthermore, the magnetic bearing manual gives the dynamic characteristics of 

current amplifiers: 

controlicontrolicontroli Vii
dt
d

44 102.2
25.0

102.2
1)( −− ×

+
×

−=  

 

The amplifier input is controliV and its output is controlii . 1controlV  and 2controlV  are the voltages 

that the controller produces to control the bearing.  The current amplifier is a low pass 

filter, the range of frequencies passed by the current amplifier is from 0 to 4545 
sec
rad .  

By adding the current amplifier dynamics to the rigid body model obtained above, let 

1controlV and 2controlV  as input variables and 1senseV and 2senseV as output variables.  
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The new state vector becomes:   
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The new state space rigid body model can be written as follows: 
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And the new output equation can be expressed as: 
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The A, B, C and D matrices can thus be written as follow:  
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The eigenvalues of the A matrix of the model obtained above correspond to the rigid 

body rotor modes and the current amplifier dynamics. These eigenvalues are the poles 

of the system. Table 3.3 gives the eigenvalues and their corresponding pole location on 

the s-plane. 

Mode/Dynamic Eigenvalues 

Rigid body rotor 182.4 

Rigid body rotor -182.4 

Rigid body rotor 259.4 

Rigid body rotor -259.4 

Current amplifier -4545.5 

Current amplifier -4545.5 

Table 3.3 Pole locations of the Rigid Body model 
 
 

From the magnetic bearing manual, the nominal transfer function for each of the on-

board controllers is: 

.)(
)102.21)(103.31(

)109.81(41.1
54

4

senseisenseicontroli VsCV
ss

sV =
×+×+

×+
= −−

−

 

Finally, the specific commands in MATLAB convert the controller model C(s) to a state 

space model. This state space model has controller matrices acont, bcont, ccont and 

dcont representing the on-board controllers.  

The MATLAB commands below are the rigid body analytical model for the system and 

it will be referred to as the “rigid body model” hereafter. 
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num=A; 

den=[7.26e-09 3.52e-04 1]; 

 [acont,bcont,ccont,dcont]=tf2ss(num,den); 
cont=pck(acont,bcont,-ccont,dcont); 
sys=pck(A,B,C,D); 
sysbar=starp(sys,cont); 
[abar,bbar,cbar,dbar]=unpck(sysbar); 
freq=logspace(1,5,200); 
bode(abar,bbar,cbar,dbar,1,freq); 

 
 

The Bode diagram of the rigid body analytical model in open loop is shown in Figure 

3.9. Figure 3.10 shows the significant poles of the open loop rigid body analytical 

model.  
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Figure 3.9 Bode diagram of the open loop rigid body analytical model 
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Figure 3.10 Significant poles of the open loop rigid body analytical model 

 
 

Bending Body Model 

In the previous analysis, it was assumed that the rotor is a rigid body. However, during 

levitation, the rotor does experience some bending. In this section, only two modes of 

the lowest frequency of bending mode will be modeled. These bending modes are 

described in Figure 3.11.   

 
Figure 3.11 Two bending modes taken into account  
Source: (Morse, Smith et al. 1995) 
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The bending model assumes that no rigid body motion is excited in the system; hence 

an equation of motion can be obtained by describing the system motion strictly due to 

the rotor bending. To achieve this equation, some matrices must be defined (Morse, 

Smith et al. 1995). 

A vector of amplitude variables is defined by: 
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Rotor displacements are defined by: 
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Mass matrix is defined by: 
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Stiffness matrix is defined by: 
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A vector forcing function is defined by: 
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The following differential equation describes the bending motion of the rotor: 

PKaaM =+
⋅⋅

.............................................................................................................. 3.54 
 
There are similarities between the differential equation given above and the standard 

differential equation of motion for a spring/mass system. Hence, the rotor behaves much 

like an interconnection of springs and masses in bending mode (Morse, Smith et al. 

1995). 

From the differential equations described above, a state vector for the flexible body is 

defined as; 
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As in the case of the rigid body, F1 and F2 are the input variables and X1 and X2 are the 

output variables. The bending mode equations expressed in state space form are as 

below: 
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The frequencies of oscillation are: sec
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The equations of motion for the rotor have been derived in rigid body alone and bending 

motion alone. The rotor displacement can be expressed as a sum of the displacements 

due to rigid body motion and bending motion. Let F1 and F2 be the input variables; X1 

and X2 be the output variables. The combined model is: 

 Xi = Xr_i + Xf_i and .
2

1
totalX

X
X

X =⎥
⎦

⎤
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⎣
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=  

Hence: Xtotal = Crxr + Cfxf. 
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The combined state space model is: 
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and the output equation is: 
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Using the linear approximations to the input and output non-linearities obtained 

previously and adding the actuator and sensor dynamics to the combined model 

described in equations 3.52 and 3.53, the new state space equation can be written as 

follows with 1controli and 2controli as input variables, and 1sensev and 2sensev as output 

variables: 
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The sensor dynamic only changes the output equation with the gain of 5000: 
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Adding the current amplifier dynamics described previously and letting 1controlV and 

2controlV be input variables; and 1senseV and 2senseV  output variables, with the new state 

vector can be expressed as: 
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The total body model state space description becomes: 
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with 
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The eigenvalues of the state matrix of the model obtained above correspond to both the 

rigid body, the bending mode and the current amplifier dynamics. These eigenvalues are 

the poles of the system. Table 3.4 gives the mode of the eigenvalues and their 

corresponding pole locations on the s-plane.  

 

Mode/Dynamic Eigenvalues 

Rigid body rotor 182.4 

Rigid body rotor -182.4 

Rigid body rotor 259.4 

Rigid body rotor -259.4 

Current amplifier -4545.5 

Current amplifier -4545.5 

Bending body rotor 0+j13477.934 

Bending body rotor 0-j13477.934 

Bending body rotor 0+j5071.6159 

Bending body rotor 0-j5071.6159 

Table 3.4 Eigenvalues of bending mode model 
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Using the MATLAB commands below, the total system model can be obtained and it 

will be referred to as the “total system model” hereafter: 

num=[1.25e-03 1.41]; 
den=[7.26e-09 3.52e-04 1]; 
[acont,bcont,ccont,dcont]=tf2ss(num,den); 
cont=pck(acont,bcont,-ccont,dcont); 
sysb=pck(ab,bb,cb,db); 
sysbarb=starp(sysb,cont); 
[abarb,bbarb,cbarb,dbarb]=unpck(sysbarb); 
freq=lospace(1,5,200); 
bode(abarb,bbarb,cbarb,dbarb,1,freq); 
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All the values of the variables can be found in Table 3.2.  

The Bode diagram of the combined rigid body and bending mode analytical model in 

open loop is shown in Figure 3.12. Figure 3.13 shows the significant poles and zeros of 

the open loop combined rigid body and bending mode analytical model. 
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Figure 3.12 Bode diagram of the open loop combined rigid body and bending mode 

analytical model 
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Figure 3.13 Significant poles and zeros of the open loop combined rigid body and 

bending mode analytical model 
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3.4 Magnetic Bearing System Identification 

Experimental Set-up 

Experimental determination of a system model is an important part of the modeling 

process in control engineering. This phase of modeling is referred to as system 

identification. The chosen approach to obtain the transfer function of the MBC 500 

AMB system was to measure the frequency response of the closed-loop system. As 

previously mentioned, an AMB is inherently unstable; this is the reason behind 

performing a closed-loop experiment. Figure 3.14 is a block diagram of the setup used 

to collect the data.   

 

The output from the function generator is sinusoidal signal with a frequency range of 10 

Hz to 3.05 KHz and a peak magnitude of 500mV. A 4 KHz Low Pass Filter (LPF) is 

used in order to limit the high frequency noise and a ±10V Voltage Limiter is required 

to ensure high voltages do not reach the DSP card. The DSP consists of input-output 

channels with analog-to-digital converters (ADC) and digital-to-analog converters 

(DAC). The ADC transforms the sinusoidal signal input into discrete form, while the 

DAC transforms the discrete form into the sinusoidal signal. The output from the card is 

stored in a data file, which contains three data columns, namely, frequency, magnitude 

and phase. 
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Figure 3.14 Block diagram of a system identification setup 
 
 
Setting-Up the Magnetic Bearing for testing 

The magnetic bearing system configuration is as shown on the magnetic bearing front 

panel block diagram in Figure 3.15. The bearing system contains four-on-board 

controllers. The on-board controllers levitate the bearing (Morse, Smith et al. 1996).  

 
Figure 3.15 Magnetic bearing block diagram  
Source: (Morse, Smith et al. 1996) 

 
The magnetic bearing is an unstable system. If any on-board controllers are 

disconnected, then the rotor will hit the touch-down bushings in the bearing housings 

which form a physical limit for the rotor. Because of this instability, any data from the 
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bearing which will be used for determining the transfer function must be taken while the 

bearing is controlled. In short, the magnetic bearing experiment must be performed in 

closed-loop system identification rather than in more direct open-loop system 

identification techniques (Morse, Smith et al. 1996).   

 
Figure 3.16 Magnetic bearing block diagram – open loop 

Source:  (Morse, Smith et al. 1996) 
 
One of the major problems of system identification is to estimate the transfer function in 

the presence of noise. Suppose the system G in Figure 3.16 is to be identified. If G is 

stable, then the system will be performed in open-loop system identification. If an input 

u  is applied and the response y is recorded, and the relationship becomes: 

nGuy += .................................................................................................................. 3.64 
 

Dividing y by u gives 

u
nG

u
y

+= ................................................................................................................... 3.65 

 

which can be used to estimate G. Typically, the output data y is collected over an 

extended period of time and the response y/u is averaged to determine an approximate 

transfer function for the bearing system. This process is valid for the open-loop system 

where u is uncorrelated with n. Since for most systems n has zero mean, the term n/u 

will average to zero and its effect on the average y/u will be minimal leading to the 

desired transfer function approximation (Morse, Smith et al. 1996): 
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u
yG ≅ .......................................................................................................................... 3.66 

 

If, u were correlated with n, then the term n/u would not average to zero and would add 

to and corrupt the estimate of G. 

For the closed-loop system configuration shown in Figure 3.17, the y/u = G +  n/u again 

holds; however, the input u can be expressed as follows (Morse, Smith et al. 1996):  

n
GC

Cr
GC

u
+

−
+

=
11

1 .............................................................................................. 3.67 

 

 

Figure 3.17 Magnetic bearing block diagram – closed loop  
Source: (Dorf and Bishop 1995)  

 
From the above equation, it is clearly showed that u and n are correlated, and therefore 

the term n/u will not average to zero as y/u is averaged. Since the effect of the noise on 

the system response cannot be neglected, its effect on the system estimate has to be 

found. Furthermore, y/u can be expressed in the following way (Morse, Smith et al. 

1996): 

Cnr
Grn

u
y

−
+

= ................................................................................................................. 3.68 
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Notice that as n becomes small compared to r, G can be obtained using y/u: 

G
u
y
≅ .......................................................................................................................... 3.69 

 

However, if n is large compared to r, then y/u will yield: 

Cu
y 1

−≅ ...................................................................................................................... 3.70 

 

The actual system data y/u will be somewhere in between G and -1/C. However, 

without the exact knowledge of the noise n, G cannot be found. Consequently, the 

accuracy of the transfer function approximation depends on the relative size of r and n 

(Morse, Smith et al. 1996). 

The following two-step, closed-loop system identification procedure avoids the noise 

problems of the process describe above. The system response can be expressed as 

follows (Morse, Smith et al. 1996): 

n
GC

r
GC

Gy
+

+
+

=
1

1
1

.............................................................................................. 3.71 

 

Because the signal r and n are uncorrelated and the signal n has zero mean, the system 

response can be averaged as follows: 

r
y

GC
GTyr ≅
+

=
Δ

1
......................................................................................................... 3.72 

 

This approximation becomes equal if the averaging is performed over an infinite time 

interval. Similarly: 

n
GC

Cr
GC

u
+

−
+

=
11

1 .............................................................................................. 3.73 
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And averaging gives: 

r
u

GC
Tur ≅

+
=
Δ

1
1 ......................................................................................................... 3.74 

 

Clearly, both yrT and urT can be estimated without a noise bias. By simply dividing yrT  

by urT  , an unbiased estimate of the system response can be estimated as follows: 

ru
ry

T
T

G
ur

yr

/
/

≅= ............................................................................................................ 3.75 

 

Obtaining Frequency Response Data 

Figure 3.18 shows the set up for obtaining the frequency response data in order to 

determine the transfer function yrT . In this bearing configuration, the “Source” signal is 

the system input and 21OUT  is the system output, yielding the transfer function Tyr=y/r. 

The range of frequency is from 0 Hz to 4000 Hz. As the data is taken, the amplitude can 

be adjusted during the experiment. This adjusted amplitude process is necessary in order 

to avoid certain resonances within the system. The rotor resonances are around 800 Hz 

and 2000 Hz (Morse, Smith et al. 1996). 

 

A point to note is that, if the bearing hits one of its physical limits and makes a loud 

noise, it is an indication that the system is unstable at certain frequencies. However, this 

is not dangerous. Despite the fact that there is no danger, the process will corrupt the 

data so the experiment process must be stopped for a while before it can be turned on 

again (Morse, Smith et al. 1996).     
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Figure 3.18 Bearing connections for estimation of Tyr 

Source:  (Morse, Smith et al. 1996) 
 

The second step of the identification process is to estimate the transfer function 

ruTur /≅ .  Figure 3.19 shows the bearing connections described above. Repeat the 

same process as for Tyr to get the frequency response data for determining Tur.  

 
Figure 3.19 Bearing connections for estimation of Tur  
Source: (Morse, Smith et al. 1996) 
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Data Obtained 

There are two sets of experimental results obtained. The first set is yr which is the 

response from input r to output y. The second is ur which is the response from input r to 

output u. A few simple MATLAB commands can be used to manipulate the data and 

plot the resulting Bode diagram. For a list of the MATLAB commands and the 

experimental data see Appendix A and B, respectively.  Figure 3.20 and 3.21 show 

Bode diagram of each separate data collection. 
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Figure 3.20 Input r to output y 
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Figure 3.21 Input r to error u 

 
 

Use of MATLAB System Identification Toolbox to obtain the model 

MATLAB can be utilized to obtain a model for the data collected. The ‘System 

Identification’ toolbox in MATLAB is essential in this process, in that it requires 

specific functions to manipulate the data to achieve a system model. These commands 

can be put into a MATLAB m-file ‘channel2.m’, which can be viewed in the Appendix 

A. This m file fits a model to the data collected and calculates a transfer function 

according to the fit. Figure 3.22 shows the Bode plot of the transfer function between 

Vcontrol1 and Vsense1. Figure 3.23 is a pole-zero map of the fitted model. Table 3.5 shows 

the zeros and poles of the identified model. 
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Figure 3.22 Bode plot of fitted model for transfer function between Vcontrol1 and Vsense1 
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Figure 3.23 Pole-zero map of fitted model 

 
 
 
 
 
 



C h a p t e r 3 Modeling and System Identification of the MBC 500 Magnetic Bearing System  

  

 

 59

Zeros Poles 
12729323 j+  1290912 j+−  

12729323 j−  1290912 j−−  

4466441 j+  484217 j+−  

4466441 j−  484217 j−−  

2311 -549 
 270 

Table 3.5 Poles and zeros of the identified model 
 

3.5 Summary 

This chapter has given brief information on the MBC500 magnetic bearing system 

parameters. The analytical model of the MBC500 magnetic bearing system has arrived 

at by drawing on physics principle. Both the rigid body model and bending body model 

have been described above. Finally, system identification, which includes data 

acquisition and parameter estimation, has also been presented. 
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4 Notch Filter and Conventional Controller Design and 
Implemetation for the MBC 500 Magnetic Bearing System 

 

4.1 Overview 

In this chapter the investigation of the conventional controller design process is 

reported. This chapter firstly describes the design of notch filters based on the resonant 

frequencies identified in the previous chapter. It then considers the design of the lead 

compensator to stabilise a single loop of the MBC 500 magnetic bearing system. 

Finally, the implementation of the designed conventional controller and notch filters for 

the MBC 500 magnetic bearing system in real time is reported. 

 

4.2 Notch Filter Design 

Notch Filtering of Resonant Modes 

As can be seen from the previous chapter, both the analytical and experimental models 

consist of two resonant modes. The two resonant modes show a large increase in 

magnitude and a large fluctuation in phase on the frequency response Bode plot around 

the resonant frequencies. These resonant frequency points are located at approximately 

749 Hz and 2069 Hz in the model, shown in the previous chapter. Resonant modes 

threaten the stability of the closed loop system. As a consequence, notch filters must be 

designed to filter out these two unwanted resonant frequencies. This is the first phase of 

the controller design, so as to get rid of unwanted characteristics.  

The resonances constrain the choice of the controller C(s). If the resonances were not in 

the system there would be more flexibility in the design of the controller C(s). 
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Therefore, it is necessary to ‘notch out’ the two resonant modes in order to cancel the 

effect of the resonant frequencies. Hence, they will not have a significant effect on the 

stability. However, the filters must cancel out the resonant effect at almost exact 

position otherwise they threaten the stability of the system. 

The magnetic bearing closed-loop system can be described by the block diagram shown 

in Figure 4.1. Figure 4.2 shows the controller C1(s) that was designed to stabilise the 

system.  

 

Figure 4.1 Magnetic bearing closed-loop configuration  
Source: (Morse, Smith et al. 1996) 

 

Figure 4.2 Magnetic bearing system  
Source: (Morse, Smith et al. 1996) 
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Moreover, the notch filter’s characteristic is shown in Figure 4.3 and has a transfer 

function defined by: 

2
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2 0
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ω
ω
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=

Qss
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where DC gain=high frequency gain=a2 

 
 
 
 
 
 

Figure 4.3 Notch filter characteristics   
Source: (Morse, Smith et al. 1996; Revell 2000; Sedra and Smith 2004) 

 
The above Figure shows an example of a resonance response curve. This method was 

used to determine the notch filters required to notch out the resonances.  

 

Figure 4.4 Approximation resonance Q from frequency data  
Source: (Sedra and Smith 2004) 
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The resonance occurs at frequency nf Hz with a corresponding magnitude peakA . Two 

points need to be selected 1f  and 2f  either sides of the peak and on a section of the 

curve that is not affected by the resonance (Morse, Smith et al. 1996; Revell 2000) such 

that: 

2

1

f
f

f
f n

n

= ......................................................................................................................... 4.2 

 

Alternatively, 

1

2

2 f
ff n= ........................................................................................................................ 4.3 

 

These places  1f  and 2f are equidistant from nf on a log scale. The magnitude of these 

points has a corresponding magnitude of 1A  and 2A , which form an average (Morse, 

Smith et al. 1996; Revell 2000): 

2
21 AAAbase

+
= .............................................................................................................. 4.4 

 

With the above information, the damping of the resonance mode Q can be estimated. 

The transfer function for a general resonance pole-pair, assuming unity gain at DC, can 

be written in the following form (Morse, Smith et al. 1996; Revell 2000): 
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RES ss
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where 0ω is the resonant frequency in radians per second. Drawing on (Morse, Smith et 

al. 1996; Revell 2000), if the resonance transfer function is evaluated at the resonant 

frequency 0ω , )(sGRES becomes 
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Q

RES
j

jG 2
0

2
0

0 )(
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and 

QjGRES =)( 0ω ............................................................................................................. 4.7 
 

The total bearing system can be expressed as a product of the resonance transfer 

function and the rest of the system (Morse, Smith et al. 1996; Revell 2000): 

QjGjGjGjG SYSRESSYSRES )()()()( 0000 ωωωω == ....................................................... 4.8 
 

The peak at the resonance frequency nf is known (Morse, Smith et al. 1996; Revell 

2000): 

peakAjG =)( 0ω ............................................................................................................. 4.9 
 

and the system magnitude (Morse, Smith et al. 1996; Revell 2000): 

baseSYS AjG ≅)( 0ω ........................................................................................................ 4.10 
 

Therefore, Q and 0ω  can be approximated by (Morse, Smith et al. 1996; Revell 2000): 

base

peak

A
A

Q ≅ .................................................................................................................... 4.11 

nfπω 20 = ..................................................................................................................... 4.12 
 

Having equations relating the system plots for Q and 0ω , both the transfer functions for 

the general resonance and the notch filters can be determined for both resonant 

frequencies.  
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Design of Notch Filters based on the Analytical Model 

With all the theory from the previous section, both notch filters were designed based on 

the analytical model. Tables 4.1 and 4.2 give the frequency points of interest and the 

calculated variables.  

  Resonance 1 Resonance 2 
  Freq (Hz) Peak  (log) Freq (Hz) Peak  (log) 

fn 749.62 0.32359 2069.01 0.00549 
f1 595.24 0.00038 1893.94 1.348e-5 
f2 945.38 0.00263 2260 0.00033388 

Table 4.1 Frequency points of interest 
 
 

  Resonance 1 Resonance 2 

Abase 0.001505229 0.000176167 
Q 214.9797291 31.19433318 
ωo 4710 13000 
ωo

2 2.21841E+07 1.69000E+08 
Table 4.2 Calculated variables 

 

From these calculations, the analytical notch filters are: 

7218.2909.21
7218.2)( 2

2

1 ess
essN

++
+
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869.174.416
869.1)( 2

2

2 ess
essN
++

+
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The two notch filters can be plotted on the same Bode diagram as the bending system 

model. 
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Figure 4.5 Bode plot of bending model and notch filters 
 

Figure 4.5 above shows that the notches occur exactly at the resonant frequencies, as 

desired. This will cancel out the effect that the resonance modes bring into the system.  

However, the resonant modes of the model obtained via system identification must also 

be taken into account because the resonant frequencies were measured in the real 

system. Therefore, the resonant frequencies of the experimental model must be 

obtained. These can be determined from the model bode plot.  
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Design of Notch Filter based on the Identified Experimental Model 

In this section, the notch filters were designed based on the experimental model. Tables 

4.3 and 4.4 give the frequency points of interest and the calculated variables.  

 

  Resonance 1 Resonance 2 
  Freq (Hz) Peak  (log) Freq (Hz) Peak  (log) 

fn 770.31 0.777141319 2053.1 0.266072506 
f1 671.63 0.021877616 1893.94 0.008128305 
f2 884.90 0.031622777 2212.25 0.009549926 

Table 4.3 Frequency points of interest 
 

  Resonance 1 Resonance 2 

Abase 0.026750196 0.008839116 
Q 29.051799 30.10171161 
ωo 4840 12900 
ωo

2 2.34e7 1.664e8 
Table 4.4 Calculated variables 

 

Based on the frequency information and the calculated values shown in the above 

Tables, the transfer functions of the designed notch filters can be shown as follows:  

734.259.166
734.2)( 2
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The two notch filters can be plotted on the same Bode diagram as the bending system 

model. 
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Figure 4.6 Bode plot of the identified model and notch filters 
 

Figure 4.6 shown above shows that the notches occur at the resonant frequencies; this 

was the desired outcome. These notches will cancel out the effect that the resonance 

modes bring into the system.  

 

4.3 Lead Compensator Design 

Lead Compensator Theory 

The MBC 500 magnetic bearing system has four internal lead compensators for 

stabilisation. A lead compensator will also be designed and implemented using the DSP 

card in order to stabilise the magnetic bearing system. The first design stage is based on 

the analytical rigid body model where the shaft is a point mass with no angle variableθ . 
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The bode plot for a typical lead compensator is given in Figure 4.7.  
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Figure 4.7 Lead compensator bode plot  
 

A general transfer function of a lead compensator is as follows: 
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The transfer function of low pass filter is given below: 
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The combined transfer function of lead compensator and low pass filter are: 
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A lead compensator provides a positive (lead) phase angle maxφ  where: 

⎟
⎠
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⎜
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Occurring at 

ατ
ω 1

max = ................................................................................................................ 4.21 

 

For a system to be stable, it must have a positive phase margin. The lead compensator 

adds positive phase to the system in a given frequency range. The positive phase margin 

specification implies that at the gain crossover frequency, the phase plot must be less 

than 180 degrees, to ensure stability. An important aspect to note about lead 

compensators is that they are high pass filters. This feature is not always desired. 

Therefore, a low pass filter shown in equation 4.18 must be added to the lead 

compensator to get rid of the high frequency noises which can affect the stability of the 

magnetic bearing system. 

 

Design of Lead Compensator 

Rigid Body Point Mass Design 

The first step of the lead compensator design is to stabilise the rigid body system using 

the rigid body model shown in equations 3.13 and 3.14 in Chapter 3. The model can be 

simplified by keeping the unstable pole pair and ignoring the dynamics of other poles 

and zeros but keeping the same DC gain. This model can be further simplified using the 

rigid body point mass system. However, the physical meaning of a point mass system 

must be known. Looking at the rotor in the rigid body case, it can still move up and 

down and sometimes one end will move higher than the other. This diagonal movement 

provides an angle θ  (see Figure 4.8). 
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Figure 4.8 Point mass diagram 
 

The angle is defined in the state-space representation system vector. From the results 

obtained in Chapter 3 for output matrix Cr with respect to output Vsense it was found that: 
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Noting that there is a value in matrix Cr for the angle θ of -685.5 and 685.5 for the 

outputsVsense1 and Vsense2 respectively. However, these values should be set to 0; 

therefore there is no diagonal movement of the rotor. The simplified transfer function 

for the system becomes: 

)4546)(4.182)(4.182(
775642)(int +−+

=
sss

esG masspo ........................................................... 4.22 

 

The transfer function defined as Gpointmass(s) comes from the rigid body model 

derivation. However there are only three system poles instead of six for simplicity. The 

other two pole pairs, due to the rigid body at 4.259±=s , have been excluded because 

the focus is on one channel. The current amplifier pole at 5.4545−=s has also been 

ignored.  
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Using the rltool function in MATLAB, the lead compensator pole and zero can be 

placed at the optimum positions. Figure 4.9 shows the rltool design window. Moreover, 

Figure 4.10 is a zoomed out plot of the root locus diagram of the new rigid body point 

mass system with the compensator Clead1(s) incorporated. As can be seen, the red points 

are the closed loop poles, and it can be shown that the system is stable because the red 

points are on the left half of the s-plane.  

 

Figure 4.9 Rltool function window in MATLAB with Clead1(s) 
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Figure 4.10 Zoomed root locus of Gpointmass(s) with lead compensator 
 

The transfer function of the lead compensator is thus obtained as: 

)3800(
)600(8175.12)(
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+

=
s

ssClead ........................................................................................ 4.23 

 

This can be compared to the on-board controller in the system parameter reported in 

Chapter 3: 

)52.21)(43.31(
)49.81(41.1)(

sese
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−+−+

−+
=  
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=
ss
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The given controller is broken into two functions, one is the lead compensator and the 

other one is a low pass filter. The low pass filter will cut off unknowns about the system 

45454.5 rad/sec (7234 Hz). This low pass filter has no effect on the low frequency 

system dynamics as the filter is more than ten times the bandwidth.  
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This compensator designed should work but unfortunately when it was implemented on 

the real MBC 500 magnetic bearing system, it was unsuccessful. The reason behind this 

unsuccessfull implementation was the value ofα . It was observed that in order to have 

the stability for the magnetic bearing system, one should not be too ambitious to provide 

a large phase margin. Otherwise, it can lead to system instability. Therefore a redesign 

was required. 

 

Obtaining an Optimum α value 

To overcome the above problem, the best α  value needs to be determined which will 

provide the optimum system stability. From the general lead compensator transfer 

function equation and Clead1(s) equation shown in equations 4.17 and 4.23, the value of 

α  can be obtained as follows:  

38001
=

τ
;   6001

=
ατ

;                  33.6
600

3800
600*
1

===
τ

α   

Meanwhile, the combination of the general transfer function and the given compensator 

equation is shown in equations 4.17 and 4.24 . Out of these, the value of α  becomes the 

following:  

30301
=

τ
;   11281

=
ατ

;               686.2
1128
3030

1128*
1

===
τ

α  

 

Because of the big differences between the above two α  values, the optimal value of  

α  needs to be determined. There must be a certain range for α  that will stabilise the 

system. Observing the two compensators’ bode plots shown in Figure 4.11, it is obvious 

that the alpha value of Clead1(s) provides a much larger phase angle. Another point is 
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that maxω  (the frequency at which the phase angle is at its maximum) occurs at a lower 

frequency.  

 

Figure 4.11 Clead1(s) (solid line) and C(s) (dotted line) bode plots  
 

Using the equations for α , a range of lead compensators were determined that 

corresponded to a range of α  values. For each of the compensators, there are related 

variables. These related variables are the DC gain and maxω  with DC gain = 1.41 (same 

as DC gain for given compensator) and 7.1848max =ω rad/sec.  

After calculations and lead compensator implementation on channel 1, the following 

stability range for α  was determined.  

51 〈〈α  

 



Chapter 4 Notch Filters and Conventional Controller Design and Implementation for the MBC 500 Magnetic 
Bearing System  

 76

Therefore, for the redesign of the lead compensator for channel 2, the algebraic mean of 

the range obtained for α  used was 3=⇒α . 

 

Redesign of the Lead Compensator 

As determined in the previous section,  3=α  and 7.1848max =ω rad/sec. Therefore, the 

compensator’s zero, pole and gain values can be calculated as follows: 

32021
max == αω

T
             3.1067

3
32021

==
Tα  23.441.1 == zero

polexk  

Therefore, the lead compensator is given by: 
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Moreover, the lead compensator with the low pass filter having a cut off frequency of 7 

KHz incorporated is given by: 

)43982(
43982

)3202(
)3.1067(23.4)(
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+

=
ss

ssClead ..................................................................... 4.26 

 

This lead compensator has a DC gain of 1.41 and it also provides a phase angle of o30 . 

Observing the two compensators’ bode plots in Figure 4.12, it can be seen that both of 

the compensators have the peak phase at the same frequency 1849max =ω  rad/sec. 

Moreover, the phase angle of Clead2(s) is lower compared to the phase angle of Clead1(s) 

as can be seen in Figure 4.13. Finally, a comparison of the frequency response of 

Clead1(s), Clead2(s) and C(s) can be seen in Figure 4.14. 
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Figure 4.12 Clead2(s) (solid line) and C(s) (dotted line) bode plots 
 

 
Figure 4.13 Clead1(s) (solid line) and Clead2(s) (dotted line) bode plots 



Chapter 4 Notch Filters and Conventional Controller Design and Implementation for the MBC 500 Magnetic 
Bearing System  

 78

 
 
Figure 4.14 Clead1(s) (solid line), Clead2(s) (dotted line) and C(s) (dashed line) bode plots 

 

Digital Controller Design 

Since the notch filter and lead compensator have to be implemented using DSP, it must 

be transformed into digital form. The transformation from continuous time to discrete 

time enables the system to be controlled through the computer with the use of 

MATLAB, SIMULINK and dSPACE DSP card. A few MATLAB commands can 

transform the transfer function of the continuous time controller into discrete form. The 

sampling period used is 4×10-5 seconds. As a result, the sampling frequency is about ten 

times the highest resonant frequency. Appendix C describes the ‘c2dm’ function, which 

converts continuous linear time-invariant systems to discrete time.  
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4.4 Simulation Using SIMULINK 

Controller Simulation using Analytical Model 

Now that the lead compensator Clead2(s) and notch filters N1(s) and N2(s) have been 

designed, the whole system can be simulated using SIMULINK. The bending state-

space model will be used to represent the bearing system dynamics. The rigid body 

model will not be used in the simulation as the real system does have distinct resonant 

modes. Figure 4.15 shows the MATLAB SIMULINK simulation window with all the 

required blocks. Note that only the x direction is taken into account, hence channel 1 

and channel 2 only are included in the simulation. For channel 1, C(s) is used and 

Clead2(s) for channel 2. The two outputs Vsense1 and Vsense2 can be plotted for a step input.  

 

 

 

 

 

 

 

 

 

 

Figure 4.15 SIMULINK description of bending body model with controller 
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For a step input of magnitude 0.001 applied to channel 1 at time t=0, the conventional 

controller and the two notch filters failed to stabilise the magnetic bearing system 

initially. Investigation has revealed that the two notch filters designed based on the 

analytical model did not notch out the resonant at the two exact resonant frequencies.  

As a result, the two notch filters have to be redesigned to cover a wide frequency range 

around the two resonant frequencies. The magnetic bearing output response is given in 

Figure 4.16 after the redesign of the two notch filters. Note that the system is stable with 

a large overshoot to begin with.  
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Figure 4.16 Step response of the magnetic bearing system-channel 1 (solid) and channel 
2 (dotted)  
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For input into channel 2, the result is the same, however the magnitudes are reversed. 

This was the expected result as the designed conventional controllers and notch filters 

stabilised both channels successfully. 

 
Controller Simulation using the Identified Experimental Model 

After the controller had been tested with the analytical model, the controller was also 

tested with the identified experimental model. The experimental model that was used in 

the simulation was the reduced order model Gred(s). The assumption was that if a 

reasonable response was achieved, then the experimental implementation would be 

successful. Figure 4.17 shows the SIMULINK block diagram containing the simplified 

model obtained via system identification, the designed lead compensator and notch 

filters.  

A step input of magnitude 0.001 occuring at t=0 was applied for 1 second and the 

response that was obtained is plotted in Figure 4.18. The horizontal scale is not in 

seconds, the plot shown occurred over 0.1 seconds. Notice that the system showed 

stability, and therefore it can be concluded that the designed controller should 

theoretically work on the real system. The reason behind this claim is that the identified 

experimental model is the closest estimate to the real system.   
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Figure 4.17 SIMULINK description of the simplified model obtained via system identification with the designed compensator and notch 

filters 
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Figure 4.18 Step response of the magnetic bearing system using the simplified model 
obtained via system identification 

 
 

Controller Implementation 

The designed lead compensator and notch filters were implemented to test the MBC 500 

magnetic bearing system stability. For this part MATLAB, SIMULINK and dSPACE 

Control Desk were required to access the DS1102 DSP board. The controller was drawn 

in a SIMULINK file, which was connected to the ADC (Analogue to Digital Converter) 

and the DAC (Digital to Analogue Converter). The DSP card could then access the 

designed controller through real time processing. Figure 4.19 shows the SIMULINK 

block diagram that was used including the lead compensator with notch filters. The 

controller variables were defined in the m-file.  
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Figure 4.19 SIMULINK block diagram including digital controller for real time 
implementation 

 

 
The controller designed worked for all four channels. Figure 4.20 shows the 

experimental setup of the whole system in full operation. The designed digital 

controllers and notch filters have been implemented using the DSP card installed in the 

computer to ensure the stability of the MBC 500 magnetic bearing system. The on 

screen software is MATLAB utilising the SIMULINK toolbox. The computer was 

powered by a V15± DC power supply that was connected to it.  
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Figure 4.20 Experimental setup of the digital control system for the MBC 500 magnetic 

bearing  
 
 

Figure 4.21 is an image of the MBC 500 magnetic bearing system taken while the 

designed controller was stabilising channel 2. It is shown that the BNC cables were 

connected to the input and output connectors of channel 2. The loop switch for channel 

2 was turned off in order to disable the internal controller and all four lights indicated 

the system was stable. At this stage the rotor shaft was levitating as desired. 
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Figure 4.21 MBC 500 magnetic bearing levitated using the designed digital controller 
on channel 2  

 
 
Another test that was deemed suitable to be applied to the system was the robustness 

test. The test involved injecting a disturbance signal in the path after the controller in the 

SIMULINK block, but before the DAC block. Figure 4.22 shows the SIMULINK block 

diagram of the robustness test implemented with a step disturbance added to the system.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 Notch Filters and Conventional Controller Design and Implementation for the MBC 500 Magnetic Bearing System  

 87

 

 
Figure 4.22 SIMULINK block diagram for robustness test with step disturbance applied to the system 
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The designed lead compensator and notch filters maintained system stability even with a 

disturbance step value of 0.1 applied to the system. The system response subjected to a 

step disturbance of 0.1 applied to channel 2 is given in Figure 4.23.  All four channels 

were tested for robustness and each test was successful.  

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.23 System response subjected to a step disturbance of 0.2 applied to channel 2 

 

The final test was to input a step signal to the input of the MBC 500 magnetic bearing 

system. When the step was enforced, the movement of the rotor was observed. Figure 

4.24 is the SIMULINK block diagram with the step input. The step response plot is 

given in Figure 4.25.  
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Figure 4.24 SIMULINK block diagram with step input
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Figure 4.25 Step input response on channel 2 
 
 

4.5 Summary 

This chapter has described the design of notch filters based on the resonant frequencies 

identified in Chapter 3. A conventional lead compensator has been designed for the 

stabilisation of the magnetic bearing system. The performance of the designed notch 

filters and lead compensator have been evaluated via simulation using both the 

analytical model and the model obtained via system identification. The simulation 

results have shown that the designed notch filters and lead compensator have stabilised 

the magnetic bearing system successfully.  Finally, the designed notch filters and lead 

compensator have been implemented for the MBC 500 magnetic bearing system in real 

time. Both the step response and robustness tests have demonstrated the effectiveness of 

the conventional controller and notch filters designed. 
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5 Fuzzy Logic Controller (FLC) Design for the MBC 500 
Magnetic Bearing System 

 

5.1 Overview 

In this chapter, the structure of Fuzzy Logic Controller (FLC) is first described. Two 

different fuzzy inference methods, Mamdani and Sugeno methods are then reviewed. 

FLC is then designed to stabilise the MBC 500 magnetic bearing system. The 

performance of the designed FLC will be evaluated via computer simulation. 

Comparison studies of the FLC performance with different inference methods and 

different number of rules will be investigated.  Finally, this chapter presents 

comparative studies of the conventional controller and the advanced PD-like Fuzzy 

Logic Controller (FLC) designed that were carried out in this research. 

 

5.2 Fuzzy Logic Controller 

A block diagram of a fuzzy control system is shown in Figure 5.1.  The fuzzy logic 

controller is composed of four elements (Passino and Yurkovich 1998): 

 A rule-base, which contains a set of If-Then rules with fuzzy logic quantification 

of the expert’s description, linguistically, of how to achieve good control. 

 An inference mechanism (an inference engine or fuzzy inference module) that 

emulates how the expert makes the decision in interpreting and applying 

knowledge about the best way to control the plant. 
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 A fuzzification interface, which converts controller inputs into information that 

the inference mechanism can use easily to activate and apply rules. 

 A defuzzification interface converts the inference mechanism’s conclusions into 

actual inputs for the process. 

fu
zz

ifi
ca

tio
n

de
fu

zz
ifi

ca
tio

n

Rule-base

Inference
mechanism

Process

Fuzzy controller

Reference input
r(t)

Input
µ(t)

Output
y(t)

 

Figure 5.1 Block diagram of a fuzzy controller  
Sources: (A Zadeh 1995; Passino and Yurkovich 1998) 

 
 

In Chapter 4 it has been stated that a classical lead compensator and two notch filters 

have been designed for the MBC500 magnetic bearing system. The control algorithm of 

a lead compensator is equivalent to a PD controller. As a result a PD-like fuzzy 

controller was designed for stabilising the MBC 500 magnetic bearing system. A block 

diagram of a PD-like fuzzy control system is shown in Figure 5.2. As can be seen in 

Figure 5.2, the fuzzy controller inputs are error and change-of-error. The details of the 

fuzzy controller design will be shown in the following section.  
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Figure 5.2 Block-diagram of a PD-like fuzzy control system  
Sources: (Reznik 1997; Passino and Yurkovich 1998) 

 

5.3 FLC Design for AMB stabilisation 

This section is focused on the design of a FLC for magnetic bearing system 

stabilisation. Figure 5.3 below shows a fuzzy logic control system for one of the four 

channels of the magnetic bearing system. Vsense is the sensor output of the magnetic 

bearing system representing the displacement in either x or y direction. The block of 

Magnetic Bearing in Figure 5.3 is composed of a power amplifier, sensor and rotor. The 

FLC is designed below. The performance of the fuzzy logic control system was 

investigated via simulation. The models identified in Chapter 3 were used in the 

simulation.   

∑

dt
d

γ

 

Figure 5.3 FLC for MBC500 magnetic bearing system 
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Fuzzy Logic Controller (FLC) Design 

FLC Inputs and Output Selection 

The inputs for the PD-like FLC are error and change-of-error. The output of the FLC is 

Vcontroli that regulates the current into the bearing which in turn will regulate the 

magnetic bearing force. The value of i is from 1 to 4 representing 4 channels of the 

magnetic bearing.  Four PD-like FLCs need to be designed for controlling the four 

channels of the MBC500 magnetic system. The design of the FLC for channel x2 is 

described in detail in this section. The design of the rest of the FLCs for channels x1, y1 

and y2 follow the same procedure.   

Figure 5.4 illustrates the MBC500 magnetic bearing shaft with the corresponding centre 

reference line, and its output and input at the right hand side for channel x2.  

2
1

2lL −

 

Figure 5.4 MBC 500 magnetic bearing control at right hand side for channel x2 
 

The displacement output x2 is sensed by the Hall-effect sensor with the output voltage 

Vsense2. Hence the error signal is defined for channel x2 as:  

)()()( 2 tVtrte sense−=  

For the magnetic bearing stabilisation problem, the reference input r(t) = 0. As a result, 

)()( 2 tVte sense−=   
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and )()( 2 tV
dt
dte

dt
d

sense−=  

The linguistic variables which describe the FLC inputs and outputs are:  

“error” describes e(t) 

“change-in-error” describes )(tedt
d  

“force” describes Vcontrol2 

The above linguistic variables “error,” “change-in-error,” and “force” will take on the 

following linguistic values:   

“NB” = Negative Big  

“NM” = Negative Medium  

“NS” = Negative Small 

“ZO” = Zero 

“PS” = Positive Small 

“PM” = Positive Medium 

“PB” = Positive Big 

The following statements quantify different configurations of the magnetic bearing.  

• The statement “error is PB” represents the situation where the magnetic bearing 

shaft is significantly below the reference line. 

• The statement “error is NS” represents the situation where the magnetic bearing 

shaft is just slightly above the reference line. However, it is neither too close to 

the position to quantify it as “ZO” nor is it too far away to quantify it as “NM”. 

• The statement “error is ZO” represents the situation where the magnetic bearing 

shaft is very close to the centre reference position. As a linguistic quantification 

is not precise, any value of the error around e(t) = 0 will be accepted as “ZO” 
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since this can be considered as a better quantification than “PS” or ”NS”. 

• The statement “error is PB and change-in-error is PS” represents the situation 

where the magnetic bearing shaft is below the reference line and, since 

02 <sensedt
d V , the magnetic bearing shaft is moving away from the centre 

position.  

• The statement “error is NS and change-in-error is PS” represents the situation 

where the magnetic bearing shaft is slightly above the centre reference line and, 

since 02 <sensedt
d V , the magnetic bearing shaft is moving toward the centre 

position.  

 

Rule-Base Formulation 

The above linguistic quantification would be used to specify a set of rules or a rule-base.  

The following three situations will demonstrate how the rule-base is developed. 

1. If error is NB and change-in-error is NB Then force is NB. 

Figure 5.5 below shows that the magnetic bearing shaft at the right end has a large 

displacement and is moving up away from the centre reference line. Therefore, it is 

clear that a strong negative force should be applied so that the shaft will move to the 

centre reference position. 
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Figure 5.5 Magnetic bearing shaft at the right end with a positive displacement 
 

2. If error is ZO and change-in-error is PS Then force is PS. 

Figure 5.6 below shows that the bearing shaft at the right end has nearly a zero 

displacement with the centre reference position (a linguistic quantification of zero 

does not imply that e(t)=0 exactly) and is moving away from the centre reference 

line. Therefore, a small positive force should be applied to counteract the movement 

so that it moves toward 1the centre reference position. If a negative force is applied 

to the magnetic bearing then it could result in overshooting the desired position. 

        Vsense 2

        Vcontrol 2

reference r =0

 

Figure 5.6 Magnetic bearing shaft at the right end with zero displacement 
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3. If error is PB and change-in-error is NS Then force is PS. 

Figure 5.7 below shows that the bearing shaft at the right end is far below the centre 

reference line and is moving towards the centre reference position. Therefore, a 

small positive force should be applied to assist the movement. However, it should 

not be a big force since the bearing shaft at the right end is already moving in the 

proper direction. 

  
 

Figure 5.7 Magnetic bearing shaft at the right end with a negative displacement 
 

Following a similar analysis, the rules of the FLC for controlling the magnetic bearing 

shaft can be developed.  For the FLC with two inputs and five linguistic values for each 

input, there are 2555 =  possible rules with all combination for the inputs. Similarly, for 

the FLC with two inputs and seven linguistic values for each input, there are 4972 =  

possible rules with all combination for the inputs. A set of possible linguistic values for 

two inputs and one output with 25 rules are NB, NS, ZO, PS and PB. Furthermore, A 

set of possible linguistic values for two inputs and one output with 49 rules are NB, 

NM, NS, ZO, PS, PM and PB. One way to list all possible rules where inputs are less 

than or equal to two or three is by using a tabular representation. The tabular 

representations of the FLC rule base (25 rules and 49 rules) of the magnetic bearing 
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fuzzy control system are shown in Tables 5.1 and 5.2 respectively.  

 “force”  “change-in-error” 
•

e  

V NB NS ZO PS PB 

NB NB NB NB NS ZO 

NS NB NB NS ZO PS 

ZO NB NS ZO PS PM 

PS NS ZO PS PB PB 

“error” 

e 

PB ZO PS PB PB PB 

Table 5.1 Rule table with 25 rules 
 

“force” 
“change-in-error” 

ė   
V NB NM NS ZO PS PM PB 

NB NB NB NB NB NM NS ZO 
NM NB NB NB NM NS ZO PS 
NS NB NB NM NS ZO PS PM 
ZO NB NM NS ZO PS PM PB 
PS NM NS ZO PS PM PB PB 
PM NS ZO PS PM PB PB PB 

“error” 
e 

PB ZO PS PM PB PB PB PB 
Table 5.2 Rule table with 49 rules 

 

The body of the FLC rule tables shown above lists the linguistic-numeric consequents. 

The left column and top row of the table contain the linguistic-numeric terms of the 

inputs. Tables 5.1 and 5.2 present abstract knowledge that the expert has about how to 

control the magnetic bearing shaft’s given error and its derivative as inputs. All those 

rules have been determined to be complete, consistent and continuous.  

 



Chapter 5 Fuzzy Logic Controller (FLC) Design for the MBC 500 Magnetic Bearing System 

 100

Fuzziffication (Fuzzy Quantification of Knowledge) 

Up to now, linguistic values have been used to describe the inputs and output of the 

FLC to specify a set of rules (a rule-base) about how to control the plant. The meaning 

of these linguistic values is quantified using membership functions. Figure 5.8 shows 

the FLC constructed using MATLAB’s fuzzy logic toolbox with inputs “error” and 

“change-of-error” and the output “force”. The input “change-of-error” has been 

quantified using the triangular memberships as shown in the figure. The membership 

functions for “error” and the output “force” have been defined using similar 

membership functions in a normalised universe of discourse [-1,1].  

 

Figure 5.8 Membership functions for the input “change-of-error” in a normalised 
universe of discourse 
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Different types of membership functions have been chosen, different methods for fuzzy 

intersection (t-norm) and union (s-norm), different numbers of rules (25 rules and 49 

rules), and different fuzzy inference methods have been investigated to explore the 

effectiveness of the designed FLC.  

 

Simulation Results 

The transfer function of the magnetic bearing model obtained via system identification, 

shown previously in Chapter 3, was used here in the simulation and the transfer function 

is repeated below:  

5.8e020 - s 1.086e018  s^2 3.881e015  s^3 5.897e010  s^4 1.899e008  s^5 334.6  s^6
7.938e020  s 3.814e017 - s^2 6.086e013  s^3 1.961e010 - s^4 4.038e005  s^5 105.2-)(

+++++
+++

=sG

 

Figure 5.9 shows the SIMULINK block diagram of the magnetic bearing system with 

the designed FLC. In contrast to the conventional control approach which has two notch 

filters taking care of the two resonant modes, the two notch filters are not present in the 

fuzzy control approach.  Using notch filters designed as reported in Chapter 4, a 

sampling frequency of fs=25 kHz was used when implementing the conventional 

controller and notch filters. As a result a delay time of 4×10-5 seconds was chosen for 

the unit delay which was used to calculate the change-of-error signal.   
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Figure 5.9 SIMULINK block diagram of the magnetic bearing system with the designed 
FLC 

 

Different membership functions, such as the triangular and Gaussian membership 

functions, have been used for the FLC.  The effect of using different methods for fuzzy 

intersections (t-norm) and unions (s-norm) have been investigated. Both Mamdani and 

Sugeno inference methods have been studied.  Thus, four typical methods have been 

investigated with four cases in each method.  

 

Some of the concepts used in MATLAB’s Fuzzy Logic Toolbox are repeated here to 

avoid any confusion. Aggregation refers to the methods of determining the combination 

of the consequents of each rule in a Mamdani fuzzy inference system in preparation for 

defuzzification. Implication refers to the process of shaping the fuzzy set in the 

consequent based on the results of the antecedent in a Mamdani-type fuzzy inference 

system. In the MATLAB fuzzy logic toolbox, two built in t-norm (AND) operations are 

supported: MIN (minimum) and PROD (product).  Two built in s-norm (OR) operations 

are supported: MAX (maximum) and probabilistic OR method PROBOR.  The 

probabilistic OR method is calculated according to the following equation: 
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PROBOR (a,b) = a + b –ab 

Method 1: FLC with 25 Rules Using Mamdani Inference Method   

Case 1 

In the first case, the designed FLC uses triangular membership functions for the inputs 

and output. The FLC uses MIN for t-norm operation, MAX for s-norm operation, MAX 

for aggregation, MIN for implication, and CENTROID for defuzzification.  

 

Case 2 

In the second case, the designed FLC uses triangular membership functions for the 

inputs and output. The FLC uses PROD for t-norm operation, PROBOR for s-norm 

operation, MAX for aggregation, PROD for implication, and CENTROID for 

defuzzification. 

 

Case 3 

In the third case, the designed FLC uses Gaussian membership functions for both inputs 

and output. The FLC also uses MIN for t-norm operation, MAX for s-norm operation, 

MAX for aggregation, MIN for implication, and CENTROID for defuzzification.  

However, the FLC failed to stabilise the magnetic bearing system in this case. 

 

Case 4 

In the last case, the designed FLC uses Gaussian membership functions for both inputs 

and output. The FLC also uses PROD for t-norm operation, PROBOR for s-norm 

operation, MAX for aggregation, PROD for implication, and CENTROID for 

defuzzification.   
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Figure 5.10 shows the step responses of the magnetic bearing system with the designed 

FLCs for the four cases described above. It can be seen that the system is stable with the 

FLCs in cases 1, 2 and 4. The FLC in case 3 failed to stabilise the magnetic bearing 

system. The step responses with the FLCs in cases 2 and 4 have less damping and 

longer settling time than case 1. From the step responses shown in this figure, it can be 

seen that the FLC in case 1 provides the best result. However, all results exhibit a large 

steady-state error as the reference step size is 0.1.  
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Figure 5.10 Step response of the magnetic bearing system with the designed FLC (25 
rules, Mamdani inference method) 

 
Method 2: FLC with 49 Rules Using Mamdani Inference Method   

Figure 5.11 shows the step responses of the magnetic bearing system with the designed 

49-rule FLC for the same four cases described in method 1. Comparing the simulation 

results in these figures, it can be seen that the FLC used in case 1 provides the step 
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response with the smallest overshoot. The FLC in case 2 provides the step response with 

the smallest steady-state error. The FLC in case 1 provides the best step response in 

terms of overall performance.  Again, all results exhibit a large steady-state error as the 

reference step size is 0.1.  
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 Figure 5.11 Step response of the magnetic baring system with the designed FLC 

(49 rules, Mamdani inference method) 
 

 
Method 3: 25-rule FLC with Sugeno Fuzzy Inference Method  

Case 1 

In the first case, the designed FLC uses triangular membership functions for the inputs 

and output. The FLC also uses MIN for t-norm operation, MAX for s-norm operation, 

and the WTAVER (weighted average) is the defuzzification method used. 
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Case 2 

In the second case, the designed FLC uses triangular membership functions for the 

inputs and output. The FLC uses PROD for t-norm operation, MAX for s-norm 

operation, and WTAVER for defuzzification.  

 

Case 3 

In the third case, the designed FLC uses Gaussian membership functions for both inputs 

and output. The FLC also uses MIN for t-norm operation, MAX for s-norm operation, 

and WTAVER for defuzzification.   

 

Case 4 

In the last case, the designed FLC uses Gaussian membership functions for both inputs 

and output. The FLC also uses PROD for t-norm operation, MAX for s-norm operation, 

and WTAVER for defuzzification.   

 

Figure 5.12 shows the step responses of the magnetic bearing system with the designed 

FLCs for the four cases described above. It can be seen that the system is stable and 

there is not much of difference in terms of steady-state error. The step response with the 

FLC in case 1 provides the best result as it has more damping and faster settling time.  

However, all results exhibit a large steady-state error as the reference step size is 0.1.  



Chapter 5 Fuzzy Logic Controller (FLC) Design for the MBC 500 Magnetic Bearing System 

 107

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in seconds

M
ag

ne
tic

 b
ea

rin
g 

di
sp

la
ce

m
en

t o
ut

pu
t

25-rule FLC with Sugeno inference method

Case 1
Case 2
Case 3
Case 4

 
 

Figure 5.12 Step response of the magnetic bearing system with the designed FLC (25 
rules, Sugeno inference method) 

 
 

Method 4: 49-rule FLC with Sugeno Fuzzy Inference Method  

Figure 5.13 shows the step responses of the magnetic bearing system with the designed 

FLCs for the the same four cases described in method 3. Comparing the simulation 

results in this figure, it can be seen that the FLC in case 1 provides the result with the 

most damping and faster settling time. Again, all results exhibit a large steady-state 

error as the reference step size is 0.1.  
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Figure 5.13 Step response of the magnetic bearing system with the designed FLC (49 

rules, Sugeno inference method) 
 

5.4 Comparison of the performances of the designed FLCs 

 
The performances of the designed FLCs using the four methods described in the 

previous section can be compared by studying the dynamic responses of the magnetic 

bearing output and the FLC output.  This can be achieved by observing Figures 5.10, 

5.11, 5.12 and 5.13 respectively.  Table 5.3 shows the comparison results by evaluating 

the rise time Tr, the maximum percentage overshoot, settling time Ts, steady-state error 

(SSE) and the range of control signals shown in Figure 5.10 for the FLC with method 1 

(except case 3 as the FLC with Gaussian membership function failed to stabilise the 

magnetic bearing system).   
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  Tr Overshoot  Ts SSE Control signal range 

Case 1 0.011 16.4% 0.056 -0.32 -0.368 to 0.138 
Case 2 0.01 30.9% 0.05 -0.263 -0.392 to 0.09 
Case 3 N/A N/A N/A N/A N/A 
Case 4 0.01 36.7% 0.056 -0.273 -0.439 to 0.057 

Table 5.3 Performance comparison of the designed FLC with method 1 
 
It can be seen that the designed FLC in case 1 uses the triangular membership functions 

for the inputs and output, MIN for t-norm operation, MAX for s-norm operation, MIN 

for implication, and CENTROID for defuzzification gave the best result among others.  

 

Table 5.4 shows the comparison results by evaluating the rise time Tr, the maximum 

percentage overshoot, settling time Ts, steady-state error (SSE) and the range of control 

signals shown in Figure 5.11 for the FLC with method 2.   

 

  Tr Overshoot  Ts SSE Control signal range 
Case 1 0.012 12.4% 0.03 -0.312 -0.37 to 0.24 
Case 2 0.01 38.05% 0.046 -0.24 -0.35 to 0.15 
Case 3 0.015 12.23% 0.04 -0.45 -0.47 to 0.2 
Case 4 0.022 2.1% 0.03 -0.435 -0.4 to 0.1 

Table 5.4 Performance comparison of the designed FLC with method 2 
 

It can be seen from Table 5.4 that the FLC uses triangular membership functions for the 

inputs and outputs, MIN for t-norm operation, MAX for s-norm operation, MAX for 

aggregation, MIN for implication, and CENTROID for defuzzification (case 1) 

provides the best result in terms of overshoot, settling time and steady state error.  
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Table 5.5 shows the comparison results by evaluating the rise time Tr, the maximum 

percentage overshoot, settling time Ts, steady-state error (SSE) and the range of control 

signals shown in Figure 5.12 for the FLC with method 3.   

 

  Tr Overshoot  Ts SSE Control signal range 
Case 1 0.01 24.40% 0.036 -0.2713 -0.3619 to 0.2856 
Case 2 0.01 26.39% 0.036 -0.2714 -0.3694 to 0.2 
Case 3 0.01 29.12% 0.03 -0.264 -0.3793 to 0.2 
Case 4 0.01 32.12% 0.058 -0.2583 -0.4054 to 0.1397 

Table 5.5 Performance comparison of the designed FLC with method 3 
 

It can be seen from Table 5.5 that the FLC in case 1 uses triangular membership 

functions for the inputs and output, MIN for t-norm operation, MAX for s-norm 

operation, and WTAVER for defuzzification (case 1) provides the best result among 

others. 

 

Table 5.6 shows the comparison results by evaluating the rise time Tr, the maximum 

percentage overshoot, settling time Ts, steady-state error (SSE) and the range of control 

signals shown in Figure 5.13 for the FLC with method 4.   

 

  Tr Overshoot  Ts SSE Control signal range 
Case 1 0.01 24.11% 0.035 -0.2721 -0.3613 to 0.2501 
Case 2 0.01 26.05% 0.036 -0.2716 -0.3666 to 0.2 
Case 3 0.009 37.50% 0.04 -0.2355 -0.3581 to 0.2078 
Case 4 0.009 46.13% 0.053 -0.2104 -0.3444 to 0.1585 

Table 5.6 Performance comparison of the designed FLC with method 4 
 

Comparing the performance of the FLC in Table 5.6, it can be seen that the 49-rule FLC 

used in case 1 uses triangular membership functions for the inputs and output, PROD 
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for t-norm operation, MAX for s-norm operation, and WTAVER for defuzzification 

provides the best result.  

Figure 5.14 shows the four best step responses of the magnetic bearing system under 

fuzzy logic control using the four methods, respectively. The solid line shows the best 

response of the magnetic bearing system using the 25-rule FLC with Mamdani inference 

method. The dotted line illustrates the best response of the magnetic bearing system 

using the 25-rule FLC with the Sugeno inference method. The dash-dotted line is the 

best response of the magnetic bearing system using the 49-rule FLC with the Mamdani 

inference method and the dashed line provides the best response of the magnetic bearing 

system using the 49-rule FLC with the Sugeno inference method.  
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Figure 5.14 Comparison of the best step responses of the magnetic bearing control 
system with the FLC designed using the four methods 
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From Figure 5.14 it can be seen that method 2 provides the best result as it leads to a 

quicker and well damped response.  

 

Investigation of Different Deffuzification Methods 

Further studies have been carried out by investigating the effect of different 

defuzzification methods. The following methods are provided in the MATLAB fuzzy 

logic toolbox: the centroid of area method (centre of gravity), the bisector of area 

method, the mean of maximum method, the smallest of maximum method, and the 

largest of maximum method. All methods have been investigated and it is found that the 

centroid of area method provides the best simulation result.  

 

Tuning via Scaling the Input and Output Universes of Discourses 

The simulation results shown previously all have a large steady-state error. This error 

cannot be completely eliminated as the controller designed is a PD-like FLC which 

doesn’t have integration property. However, the output response can be improved by 

adjusting the scaling factors Kp, Kd and h shown in Figure 5.9. This in turn will adjust 

the universe of discourses for the input and output membership functions. Figure 5.15 

shows a comparison result with different scaling factors. It can be seen that the steady-

state error has been reduced dramatically with Kp=1, Kd=1 and h=2. However, the 

damping on the step response has been reduced. The response with Kp=1, Kd=1 and 

h=1.4 provides the result with a small steady-error and faster settling time. 
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Figure 5.15 Step responses of the magnetic bearing system with the FLC design using 
different scaling factors 

 

Simulation of the Magnetic Bearing System with the Designed FLC Using the 
Analytical Model   
 
The block diagram of the magnetic bearing system under the control of the designed 

FLCs based on the analytical model (both rigid and bending modes) is shown in Figure 

5.16. Figure 5.17 shows the step response of the displacement corresponding to a step 

change with the designed PD-like FLCs. The solid line shows the step response of 

channel 1 and the dotted line shows the response of channel 2. It can be seen that the 

designed FLCs stabilise the system without introducing the notch filters if the system 

model is represented in the combined rigid body and bending modes.  
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Figure 5.16 Block diagram of the fuzzy control approach with the analytical model  
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Figure 5.17 Step response with the designed FLC using the analytical model 
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Implementation of the FLC Designed for the MBC 500 Magnetic Bearing System 

 The FLC was programmed in C language. The sampling period used in the 

implementation is 4×10-5 seconds. However, it was found that the DSP was unable to 

execute all the code in the specified sample period. One solution to this problem is to 

program the FLC using Assembler language. The other alternative is to purchase a 

much faster DSP card. However, due to time and financial constraints, these alternatives 

could not be explored in this research; these have been left as further work to be carried 

out at a later stage.  

 

5.5 Comparison between the Conventional Controller and the 
Advanced Fuzzy Logic Controller (FLC) for Magnetic Bearing 
Stabilisation 

 

Conventional Controller 

It was demonstrated previously in Chapter 4 that there were two resonant modes which 

threaten the stability of the closed loop magnetic bearing system. The conventional lead 

compensator cannot handle the two dominant resonant modes of the magnetic bearing 

system. This necessitates the design of two notch filters to filter out the unwanted 

characteristics at the resonant frequencies. From the analytical and experimental models 

of the MBC500 magnetic bearing system, it was found that the two resonant modes are 

located at approximately 749 Hz and 2069 Hz. After two notch filters were designed to 

handle the two resonant modes, a lead compensator was designed to stabilise the 

magnetic bearing system.  The lead compensator added a positive phase to the system in 

a given frequency range. The compensator design was based on the analytical rigid 

body model where the shaft was a point mass with no angle variable ө. 
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The performances of the conventional lead compensator and the two notch filters 

designed have been evaluated via simulation using both the analytical model and the 

model obtained via system identification.  The designed lead compensator and notch 

filters were also implemented in real time for the MBC 500 magnetic bearing system. 

The controller designed worked for all four channels of the MBC 500 magnetic bearing 

system. Tests were performed to test the dynamic response and robustness of the 

conventional controller and the notch filter designed and each test was successful. 

  

Advanced Fuzzy Logic Controller (FLC) 

A PD-like FLC was designed for stabilising the magnetic bearing system. Two different 

numbers of rule sets (25-rule and 49-rule) were formulated for the PD-like FLC. Two 

different fuzzy inference methods, the Mamdani and Sugeno methods, have been used. 

The performance of the designed FLC has been evaluated via simulation. Comparison 

studies of the FLC performances with two different sets of rules, two different inference 

methods, different membership functions, different t-norm and s-norm operations, and 

different defuzzification methods have been investigated. Simulation results show that 

the FLC designed leads to a good system performance. To further improve system 

performance, scaling factors have been tuned. Simulation has also been carried out 

based on the analytical model derived that represented both the rigid body and bending 

modes. Again, simulations have shown highly promising results.  

The simulation performance showed that the FLC designed can handle the resonant 

modes very well without the presence of the two notch filters.   

Based on all the simulation results reported above, it was concluded that the designed 

49-rule FLC uses triangular membership functions for the inputs and output,  MIN for t-
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norm operation, MAX for s-norm operation, MAX for aggregation, MIN for 

implication, and CENTROID for defuzzification provides the best result.  
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Figure 5.18 Comparison results of the step response of the magnetic bearing system 
with the designed conventional controller and the designed FLC 

 
 

Figure 5.18 shows the step response of the magnetic bearing system with the designed 

conventional controller and the designed FLC based on the identified model of the 

MBC 500 magnetic bearing system. Comparing the simulation results of the 

conventional controller and the advanced PD-like FLC, it can be seen that the response 

with the designed conventional controller has less settling time. The step response with 

the designed advanced PD-like FLC has longer setting time but less steady-state error.  

Moreover, the advanced PD-FLC can handle the two resonant modes without the need 

of using the two notch filters.   
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5.6 Summary 

This chapter started with the structure of a basic FLC. Two different fuzzy inference 

methods, the Mamdani and Sugeno methods, have been reviewed. The process of 

developing and designing the FLC for the stabilisation of the magnetic bearing system 

has been described. The performance of the designed FLC has been evaluated via 

simulation. The simulation result shows that the FLC designed leads to a good system 

performance. Comparison studies of the FLC performances with two different sets of 

rules, two different inference methods, different membership functions, different t-norm 

and s-norm operations, and different defuzzification methods have been investigated. To 

further improve system performance, scaling factors have been tuned. Again, 

simulations have shown highly promising results.  

Finally, this chapter has compared the controller simulation for both the conventional 

controller and advanced PD-like fuzzy logic controller via evaluating controller 

performance. The advantage of using the conventional controller lies in its simplicity 

for real-time implementation. The disadvantage of using the conventional controller is 

that it cannot handle the resonant modes and as a result additional notch filters are 

needed in this method. If the notch filters are not designed properly, they can lead to the 

instability of the system. In addition, four separate conventional controllers were 

designed, based on the four models of the four channels of the magnetic bearing system.  

The first advantage of the PD-like FLC is that it can handle the resonant modes well 

without using notch filters.  As a result, this will not threaten the stability of the system. 

The second advantage of the PD-like FLC is that as the FLC is nonlinear, the PD-like 

FLC designed for one channel should work for all other three channels. However, the 

PD-like FLCs are more computationally intensive than the conventional controller. Due 
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to the speed limit of the DS1102 DSP card, the PD-like FLC cannot be implemented at 

this stage. The overall conclusion and direction for future development will be 

discussed in the next chapter.   
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6 Conclusion and Future Work 

 

6.1 Overview 

In this last chapter, all the preceding chapters will be brought together with the aim to 

examine the extent to which the objectives have been achieved. This chapter also will 

present some directions for future development and other related work. 

 

6.2 General Conclusion 

The study has investigated the techniques for identifying a system model and designing 

both the conventional and advanced controllers for Active Magnetic Bearing (AMB) 

system stabilisation.   

 

In Chapter 3 it has been reported that an analytical model of the MBC 500 magnetic 

bearing system has been derived. This provided the basic knowledge of the AMB 

system’s rigid body and bending body models. In the same Chapter 3 it has been 

reported that a model has been obtained via a two-step closed-loop system 

identification.  This research concludes that the magnetic bearing system is complex to 

model both analytically and experimentally. Although complex, the analytical model 

has provided a realistic view of the real system. The model obtained via system 

identification has provided adequate information on the low frequency and the two 

resonant modes of the MBC 500 magnetic bearing system.  
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In Chapter 4 the design of notch filters based on the resonant frequencies as reported in 

Chapter 3 has been carried out. The two notch filters have been designed in order to 

control the magnitude and phase fluctuations at the resonant modes in the system.   A 

conventional controller has been designed and implemented based on the model 

obtained as reported in Chapter 4. A significant conclusion has been drawn when 

designing the lead compensator.  It has been found that a controller with too large a 

positive phase angle has a negative effect on the magnetic bearing system.  This finding 

is very significant because it restricts the controller design specifications and yields an 

optimum lead angle for the compensator. The performance of the designed controller 

and the two notch filters have been evaluated via computer simulation using MATLAB 

and SIMULINK.  This conventional controller and the two notch filters have also been 

implemented using the dSPACE DS1102 DSP card.   

 

In Chapter 5 the Fuzzy Logic theory and Fuzzy Logic Controller (FLC) structures with 

two different fuzzy inference methods that this study has drawn upon have been 

reported. These inference methods are Mamdani and Sugeno-Type fuzzy inference 

methods. PD-like FLC has then been designed for the AMB system stabilisation. Two 

different numbers of rule sets (25-rule and 49-rule) were formulated for the PD-like 

FLC. Two different fuzzy inference methods, Mamdani and Sugeno methods, have been 

used. The performance of the designed FLC has been evaluated via simulation. 

Comparison studies of the FLC performances with two different sets of rules, two 

different inference methods, different membership functions, different t-norm and s-

norm operations, and different defuzzification methods have been investigated. The 

simulation result showed that the FLC designed leads to a good system performance. To 
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further improve system performance, scaling factors have been tuned. Again, 

simulations based on both the identified model and the analytical models of the 

MBC500 magnetic bearing system have shown highly promising results.  It must be 

pointed out that the simulation performance has shown that the FLC designed can 

handle the resonant modes very well without the presence of the two notch filters.   

Comparison studies of the designed conventional and the advanced PD-like FLC for the 

AMB system stabilisation have been evaluated via controller performance simulation. 

This has been reported in chapter 5. The simulation results have shown that both the 

conventional and the advanced PD-like FLC stabilise the MBC 500 magnetic bearing 

system successfully. The advantage of using the conventional controller lies in its 

simplicity for real-time implementation. The disadvantage of using the conventional 

controller is that it cannot handle the resonant modes and as a result additional notch 

filters are needed in this method. If the notch filters are not designed properly, it can 

lead to the instability of the system. The first advantage of the PD-like FLC is that it can 

handle the resonant modes well without using notch filters.  As a result, this will not 

threaten the stability of the system. The second advantage of the PD-like FLC is that as 

the FLC is nonlinear, the PD-like FLC designed for one channel should work for all 

other three channels. However, the PD-like FLC are more computationally intensive 

than the conventional controller. Due to the speed limit of the DS1102 DSP card, the 

PD-like FLC cannot be implemented at this stage.  
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6.3 Suggestions for Future Research 

The extensions of this research lie primarily in the areas of implementation and 

applications of the FLC. It is highly recommended that a faster DSP be used for the 

implementation of the FLC.  

 

The rotor in the MBC 500 magnetic bearing system has been suspended but is not 

rotating.  In magnetic bearings the shafts (rotors) are often required to rotate at high 

speeds and unbalanced masses in these systems generate significant disturbance forces 

called synchronous forces. The synchronous forces cause vibration of the rotors and can 

often lead to severe problems in rotating machines. Another extension of the research is 

to investigate both conventional and advanced approaches for attenuating the effects of 

synchronous disturbances in the magnetic bearing systems.   
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APPENDIX A 
 

File : channel2 
Description: Program for data  
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load c:\MATLAB701\work\channel2.mat %Data collected by Jared 

%bode plot of magnetic bearing channel 2 from r2 to y2 

figure(1) 

subplot(211),semilogx(yr2(:,1)*2*pi,20*log10(yr2(:,2))); 

title('Input r2 to output y2') 

ylabel('Magnitude'), grid on 

subplot(212),semilogx(yr2(:,1)*2*pi,yr2(:,3)); 

ylabel('Phase'), grid on 

xlabel('radians') 

%bode plot of magnetic bearing channel 2 from r2 to u2 

figure(2) 

subplot(211),semilogx(ur2(:,1)*2*pi,20*log10(ur2(:,2))); 

title('Input r2 to error u2') 

ylabel('Magnitude'), grid on 

subplot(212),semilogx(ur2(:,1)*2*pi,ur2(:,3)); 

ylabel('Phase'), grid on 

xlabel('radians') 

%data Tyr/Tur 

amp=yr2(:,2)./ur2(:,2); %Amplitude 

pha=(yr2(:,3)-ur2(:,3));%Phase 

rps=2*pi*yr2(:,1); %Frequency in rad/s 

%Transform amplitude and phase to a complex valued response 

i=sqrt(-1); 

zfr=amp.*exp(i*pha*pi/180); 

Ts=0; %sample time is 0 for continuous time system 

gfr=idfrd(zfr,rps,Ts); 

figure(3) 

bode(gfr) 

%Use frequency domain data for estimation to get a continuous time 

model 

%For a polynomial model with nb as numerator coefficient and nf as 

%estimated denominator coefficient 

nb=2; 

nf=3; 

modeloe=oe(gfr,[nb nf]); 

%compute the prediction error estimate of a general  

%liner model with default choice of order 



 

 130

modelpem=pem(gfr);  

figure(4) 

compare(gfr,modeloe,modelpem); 
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APPENDIX B 
Frequency Response Data for Channel 2  
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This is the frequency response of the bearing system under closed loop stable operation. 
 

Input r2 to Output u2  Input r2 to Output y2 
       

Freq(Hz) Gain (V/V) Phase (deg) Freq(Hz) Gain (V/V) Phase (deg) 

10 1.127 352.64  10 1.4905 177.78 
15 1.1746 355.46  15 1.5322 172.71 
20 1.3247 345.78  20 1.6388 177.82 
25 1.4927 339.98  25 1.7708 178.05 
30 1.8381 337.86  30 1.9853 172.1 
35 2.3276 330.06  35 2.3384 167.71 
40 2.9659 312.61  40 2.5987 132.32 
45 3.1892 288.22  45 2.7345 115.12 
50 3.2256 259.75  50 2.6902 96.733 
55 3.5073 251.86  55 2.0613 82.346 
60 2.3002 245.85  60 1.4488 79.698 
65 2.1902 248.63  65 1.3547 74.828 
70 2.354 267.43  70 1.2551 74.898 
75 2.8338 263.34  75 1.2859 73.05 
80 2.8693 237.82  80 1.477 62.932 
85 3.296 249.67  85 1.2818 60.806 
90 2.5625 216.87  90 1.3318 39.963 
95 2.2629 212.49  95 1.0511 39.415 

100 2.3918 210.28  100 0.961 28.27 
110 2.5179 198.2  110 0.7306 21.419 
120 1.8941 197.14  120 0.5934 15.429 
130 1.7446 192.44  130 0.4959 8.9109 
140 1.6242 189.64  140 0.4071 5.3251 
150 1.5384 187.58  150 0.3497 3.0341 
160 1.4782 184.92  160 0.2967 3.5176 
170 1.4151 175.49  170 0.2634 0 
180 1.3789 194.94  180 0.2354 351.63 
190 1.3487 178.57  190 0.2125 356.34 
200 1.3193 176.19  200 0.1905 356.58 
210 1.2969 175.96  210 0.1751 349.04 
220 1.2778 179.79  220 0.1602 344.93 
230 1.2576 176.73  230 0.1504 352.57 
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240 1.2564 165.05  240 0.1355 343.77 
250 1.233 173.73  250 0.1318 344.69 
260 1.2108 173.59  260 0.1151 338.08 
270 1.2162 196.15  270 0.1104 343.28 
280 1.1999 180.8  280 0.1051 339.97 
290 1.2004 174.08  290 0.1027 340.8 
300 1.1796 169.19  300 0.0962 336.13 
310 1.1726 189.27  310 0.0912 339.26 
320 1.1956 156.55  320 0.0913 338.07 
330 1.1786 177.74  330 0.0832 332.89 
340 1.1529 168.54  340 0.0741 332.92 
350 1.1479 166.1  350 0.0755 323.51 
360 1.1687 181.43  360 0.0716 325.98 
370 1.1497 161.38  370 0.0651 322.58 
380 1.1558 156.03  380 0.0686 325.29 
390 1.1268 168.38  390 0.0649 331.33 
400 1.1237 165.79  400 0.0635 323.31 
410 1.1223 167.42  410 0.0627 317.33 
420 1.1148 163.23  420 0.0588 323.81 
430 1.1093 164.64  430 0.0604 314.92 
440 1.1355 148.7  440 0.0529 314.43 
450 1.0767 169.57  450 0.0512 311.2 
460 1.0792 155.42  460 0.0478 316.68 
470 1.1163 168.82  470 0.0505 320.62 
480 1.1204 155.27  480 0.0509 316.02 
490 1.0767 159.3  490 0.0427 309.69 
500 1.0781 157.48  500 0.0403 315.5 
510 1.0801 158.84  510 0.041 305.56 
520 1.0798 157.02  520 0.0444 298.74 
530 1.0737 158.63  530 0.0418 300.37 
540 1.0661 159.8  540 0.0389 311.28 
550 1.0644 154.71  550 0.0396 294.91 
560 1.0776 132.1  560 0.0415 295.88 
570 1.008 173.94  570 0.0401 307.32 
580 0.9983 175.11  580 0.0375 293.08 
590 1.0345 144.2  590 0.0346 288.29 
600 1.0476 134.18  600 0.0272 277.9 
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610 1.054 149.98  610 0.0357 288.61 
620 1.0362 154.81  620 0.0296 274.94 
630 1.0206 153.82  630 0.029 279.01 
640 1.0066 149.02  640 0.0265 271.38 
650 1.0303 149.96  650 0.0242 273.47 
660 0.9977 154.29  660 0.0256 260.13 
670 0.9892 147.92  670 0.0222 18.397 
680 0.8211 152.25  680 0.0216 266.18 
690 0.966 124.83  690 0.0239 237.13 
700 0.9051 165.79  700 0.0203 241.8 
710 1.0123 171.53  710 0.0226 204.81 
720 0.9111 149.38  720 0.0233 201.08 
730 0.9369 160.49  730 0.0214 195.4 
740 0.8445 155  740 0.0375 168.55 
750 0.7801 153.97  750 0.0656 161.32 
751 0.7789 153.33  751 0.061 137.52 
752 0.7387 146.97  752 0.069 149.48 
753 0.7321 153.01  753 0.069 145.67 
754 0.7381 151.73  754 0.0762 154.61 
755 0.7379 140.28  755 0.0797 150.42 
756 0.666 139.46  756 0.0819 156 
757 0.6657 145  757 0.0865 139.03 
758 0.6944 161.14  758 0.085 136.47 
759 0.661 160.83  759 0.0898 125.66 
760 0.6333 156.55  760 0.1045 127.56 
761 0.5858 146.69  761 0.1046 119.24 
762 0.5627 153.08  762 0.1139 133.31 
763 0.5435 143.09  763 0.1245 129.26 
764 0.4849 149.67  764 0.1299 125.44 
765 0.4838 165.05  765 0.1374 125.07 
766 0.4269 152.44  766 0.1613 126.66 
767 0.3904 156.5  767 0.162 118.68 
768 0.351 173.73  768 0.1822 121.89 
769 0.3063 176.91  769 0.1984 118.1 
770 0.2944 191.51  770 0.2237 96.118 
771 0.3089 213.96  771 0.2421 96 
772 0.3783 224.93  772 0.2735 104.24 
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773 0.5211 228.99  773 0.3073 101.14 
774 0.7585 253.42  774 0.3531 94.286 
775 0.9015 248.22  775 0.4982 74.885 
776 1.1528 237.53  776 0.4351 68.79 
777 1.4089 231.84  777 0.4356 52.342 
778 1.7302 222.2  778 0.5145 55.02 
779 1.9159 205.63  779 0.5273 31.104 
780 2.0716 202.54  780 0.4959 26.678 
781 2.0973 190.08  781 0.4799 12.038 
782 2.0998 187.2  782 0.4513 4.3254 
783 2.0288 181.15  783 0.3963 358.18 
784 1.9576 171.95  784 0.3393 350 
785 1.8732 168.8  785 0.3042 343.48 
786 1.7989 162.69  786 0.2837 342.52 
787 1.7382 167.88  787 0.2775 338.51 
788 1.6935 166.15  788 0.2372 333.03 
789 1.6517 159.49  789 0.2306 337.3 
790 1.5953 164.9  790 0.2174 324.24 
791 1.5443 153.04  791 0.2091 330.13 
792 1.5487 158.26  792 0.1931 327.09 
793 1.5032 155.28  793 0.1793 329.8 
794 1.4881 153.04  794 0.1622 323.56 
795 1.4283 153.79  795 0.1615 317.46 
796 1.4351 152.04  796 0.1469 322.95 
797 1.4047 147.51  797 0.1562 315.96 
798 1.3879 147.86  798 0.1302 325.18 
799 1.3664 152.78  799 0.1321 318.36 
800 1.215 125.09  800 0.1361 327.17 
801 1.3429 148.24  801 0.1208 308.37 
802 1.3318 152.44  802 0.1277 319.8 
803 1.3199 153.87  803 0.1091 321.81 
804 1.3212 148.48  804 0.1212 313.94 
805 1.3188 150.25  805 0.1155 320.81 
806 1.2877 148.48  806 0.1008 306.69 
807 1.2754 149.46  807 0.1105 320.63 
808 1.2633 145.07  808 0.0899 313.65 
809 1.2462 147.92  809 0.1046 322.93 
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810 1.1362 123.22  810 0.0855 312.51 
820 1.2036 148.34  820 0.0772 299.81 
830 1.1342 126.12  830 0.0803 297.18 
840 1.0266 127.39  840 0.0622 230.05 
850 1.1438 165.36  850 0.0526 289.13 
860 1.0434 162.42  860 0.0504 295.27 
870 1.1827 154  870 0.0527 289.5 
880 1.0436 138.05  880 0.044 303.77 
890 1.0711 121.78  890 0.0537 301.59 
900 1.1477 153.65  900 0.042 296.74 
910 0.8928 147.1  910 0.042 282.1 
920 1.0945 147.27  920 0.0365 279.93 
930 1.1106 128.38  930 0.0453 289.57 
940 1.1189 151.93  940 0.0403 279.39 
950 1.0994 135.73  950 0.0416 299.66 
960 1.0924 149.14  960 0.0345 276.99 
970 1.0264 130.48  970 0.0311 269.86 
980 1.0214 136.04  980 0.0419 265.05 
990 0.9255 119.29  990 0.0349 270.73 

1000 0.947 116.71  1000 0.035 269.41 
1050 0.9964 139.9  1050 0.032 250.83 
1100 1.0317 141.11  1100 0.0367 286.12 
1150 0.9821 129.3  1150 0.0243 248.44 
1200 0.964 127.88  1200 0.0242 272.07 
1250 0.895 108.81  1250 0.0209 260.31 
1300 0.903 132.05  1300 0.02 225.86 
1350 1.039 141.1  1350 0.0169 224.8 
1400 0.966 132.2  1400 0.0161 202.09 
1450 0.9037 119.81  1450 0.0164 114.95 
1500 0.7552 98.33  1500 0.015 225 
1550 0.7323 97.644  1550 0.0142 241.64 
1600 0.8835 113.59  1600 0.011 188.31 
1650 0.8644 111.78  1650 0.0165 214.99 
1700 0.7894 131.57  1700 0.0148 242.35 
1750 0.9437 102.47  1750 0.009 218.09 
1800 0.8657 109.15  1800 0.01 212.75 
1850 0.8238 109.88  1850 0.0094 198.27 
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1900 0.7782 103.37  1900 0.0085 193.91 
1950 0.7617 88.129  1950 0.0061 324.9 
2000 0.7738 97.278  2000 0.0092 108.78 
2010 0.7829 88.918  2010 0.0091 24.597 
2020 0.7647 99.085  2020 0.0093 108.02 
2030 0.8231 118.7  2030 0.0123 96.515 
2040 0.6362 105.55  2040 0.0199 85.714 
2041 0.7133 102.01  2041 0.0238 89.918 
2042 0.7417 111.56  2042 0.0198 90.041 
2043 0.6434 118.7  2043 0.0222 90.768 
2044 0.676 96.825  2044 0.0229 92.701 
2045 0.6955 110.54  2045 0.0268 85.913 
2046 0.658 96.759  2046 0.0322 71.837 
2047 0.6426 96.475  2047 0.0303 73.072 
2048 0.6129 100.95  2048 0.0377 70.588 
2049 0.6057 116.73  2049 0.0425 70.109 
2050 0.5441 93.496  2050 0.057 69.136 
2051 0.5111 85.246  2051 0.0567 80.109 
2052 0.3745 112.29  2052 0.0802 74.188 
2053 0.3305 156.31  2053 0.098 63.76 
2054 0.9922 130.97  2054 0.1672 65.041 
2055 0.7007 135.51  2055 0.3299 20.683 
2056 2.6229 169.81  2056 0.1627 348.74 
2057 2.0399 95.473  2057 0.2933 350.43 
2058 1.2033 87.686  2058 0.2563 283.76 
2059 1.1479 92.461  2059 0.1549 268.12 
2060 1.2029 114.1  2060 0.092 265.92 
2061 1.0229 85.014  2061 0.086 276.96 
2062 1.1166 89.796  2062 0.0859 268.32 
2063 0.9589 110.88  2063 0.0552 240.7 
2064 0.8515 100.69  2064 0.0454 257.56 
2065 1.0106 87.243  2065 0.0453 258.39 
2066 0.931 95.872  2066 0.037 251.94 
2067 0.9314 96.326  2067 0.0434 242.45 
2068 1.0094 84.182  2068 0.0444 238.34 
2069 0.8058 83.039  2069 0.0357 256.72 
2070 0.9516 85.714  2070 0.0336 234.07 
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2071 0.8919 94.526  2071 0.0259 235.98 
2072 0.9999 112.12  2072 0.0267 224.18 
2073 0.8492 97.386  2073 0.0234 243.29 
2074 0.8873 100.14  2074 0.0224 224.48 
2075 0.8708 95.872  2075 0.0381 304.11 
2076 0.9663 109.52  2076 0.0213 226.04 
2077 0.9755 113.09  2077 0.0241 235.03 
2078 0.9667 113.42  2078 0.0225 238.19 
2079 0.9613 91.803  2079 0.0203 239.34 
2080 0.7441 97.79  2080 0.0174 240.65 
2090 0.7486 100.27  2090 0.0202 241.5 
2100 0.8299 93.724  2100 0.0151 209.42 
2150 0.8343 102.26  2150 0.0089 188.03 
2200 0.7706 92.176  2200 0.008 336.93 
2250 0.7918 93.527  2250 0.0065 346.34 
2300 0.7447 79.42  2300 0.0093 197.65 
2350 0.6889 76.034  2350 0.0047 114.87 
2400 0.7394 85.493  2400 0.0045 187.51 
2450 0.7819 74.755  2450 0.0062 167.86 
2500 0.6842 81.84  2500 0.0061 151.55 
2550 0.6511 82.4  2550 0.0037 171.99 
2600 0.709 75.85  2600 0.0052 271.41 
2650 0.7345 72.12  2650 0.0052 108.18 
2700 0.69 75.271  2700 0.0043 154.06 
2750 0.6752 63.905  2750 0.0044 156.3 
2800 0.6798 66.661  2800 0.0039 93.705 
2850 0.6923 63.586  2850 0.0043 174.15 
2900 0.7299 81.134  2900 0.0029 120.64 
2950 0.6325 66.948  2950 0.0043 72.623 
3000 0.6551 64.392  3000 0.0048 137.68 
3050 0.6454 60.508  3050 0.0038 147.53 
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C2DM   Conversion of continuous LTI systems to discrete-time 
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C2DM   Conversion of continuous LTI systems to discrete-time. 
  
    [Ad,Bd,Cd,Dd] = C2DM(A,B,C,D,Ts,'method') converts the continuous- 
    time state-space system (A,B,C,D) to discrete time using 'method': 
      'zoh'         Convert to discrete time assuming a zero order 
            hold on the inputs. 
      'foh'         Convert to discrete time assuming a first order  
            hold on the inputs. 
      'tustin'      Convert to discrete time using the bilinear  
            (Tustin) approximation to the derivative. 
      'prewarp'     Convert to discrete time using the bilinear  
            (Tustin) approximation with frequency prewarping. 
            Specify the critical frequency with an additional 
            argument, i.e. C2DM(A,B,C,D,Ts,'prewarp',Wc) 
      'matched'     Convert the SISO system to discrete time using the 
            matched pole-zero method. 
  
    [NUMd,DENd] = C2DM(NUM,DEN,Ts,'method') converts the continuous- 
    time polynomial transfer function G(s) = NUM(s)/DEN(s) to discrete 
    time, G(z) = NUMd(z)/DENd(z), using 'method'. 
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1. Equation 3.16  

θθθ cos)(cos)( 21220 lFlFIM LL −−−==
⋅⋅

∑  

 

is derived from equation 3.7 ; 3.8 and 3.15 : 

θsin)( 201 lxx L −−=  

Equation 3.7 

 

θsin)( 202 lxx L −+=  

Equation 3.8 

 

210 FFxmF +==
⋅⋅

∑  

Equation 3.15 

 

2. Equation 3.20  

m
F

m
F 21

0 +=
⋅⋅

χ  

 

is derived from equation  3.15 
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3. Equation 3.21  
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is derived from equation 3.16 

θθθ cos)(cos)( 21220 lFlFIM LL −−−==
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∑  
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4. Equation 3.22  

θ)( 2201 lxX L −−=  

 

is derived from equation 3.9 

θsin)( 2201 lxX L −−=  

 

5. Equation 3.23 

θ)( 2202 lxX L −+=  

 

 is derived  from equation 3.10 

θsin)( 2202 lxX L −+=  

 

6. Equation 3.24 
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is derived from equations 3.20 and 3.21 
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Equation 3.20 
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7. Equation 3.25 
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⎥
⎥
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is derived from equations 3.22 and 3.23 

θ)( 2201 lxX L −−=  

Equation 3.22 
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Equation 3.23 

8. Equation 3.28 
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Is derived from equation 3.27 

2

2

2

2

)0004.0(
)5.0(

)0004.0(
)5.0(

+

−
−

−

+
=

i

control

i

control
i x

i
k

x
i

kF ii  

9. Equations 3.32 and 3.33 

111 5.34375 controlixF +=  

Equation 3.32 
 

222 5.34375 controlixF +=  

Equation 3.33 
 

are derived from equations 3.26, 3.29 and 3.31 
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4375
)0,0(
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∂
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F

 

Equation 3.29 
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Equation 3.31 
 

10. Equation 3.34 

1201 5.3)(43754375 control
L ilxF +−−= θ  

is derived  from equations 3.7 and 3.32 

θsin)( 201 lxx L −−=  

Equation 3.7 
 

111 5.34375 controlixF +=  
Equation 3.32 

11. Equation 3.35 

2202 5.3)(43754375 control
L ilxF +−+= θ  

is derived from equations 3.8 and 3.33 

θsin)( 202 lxx L −+=  

Equation 3.8 
 

222 5.34375 controlixF +=  

Equation 3.33 
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12. Equation 3.36 
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is derived from equations 3.20, 3.34 and 3.35 
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Equation 3.20 
 

1201 5.3)(43754375 control
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Equation 3.34 
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Equation 3.35 
 
13. Equation 3.37 
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1201 5.3)(43754375 control
L ilxF +−−= θ  

Equation 3.34 
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2202 5.3)(43754375 control
L ilxF +−+= θ  

Equation 3.35 
 

14. Equation 3.38 
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is derived from equations 3.36 and 3.37 
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15. Equation 3.39 
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is derived from equations 3.22 and 3.23 
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Equation 3.22 

 



 

 148

θ)( 2202 lxX L −+=  

Equation 3.23 
16. Equation 3.45 
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is derived from equations 3.22, 3.23 and 3.43 
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Equation 3.22 
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17. Equation 3.47 
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18. Equation 3.48 
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19. Equation 3.55 
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20. Equation 3.56 
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21. Equation 3.57 
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Fuzzy Theory 
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Fuzzy Theory 
Fuzzy Set 

Fuzzy logic is designed for situations where information is inexact and the traditional 

binary logic based on “true” (or “1”) and “false” (or “0”) are not possible. Fuzzy logic is 

a form of logic in which variables can have degrees of truth or falsehood. Fuzzy logic 

starts with the concept of a fuzzy set. Fuzzy set consists of elements with only a partial 

degree of membership.  

A fuzzy set F in a universe of discourse U is characterised by a membership function µ 

which takes values in the interval [0,1] namely, µF: U → [0,1].  

 

Membership Function (MF) 

A membership function (MF) is a curve that defines how to map every point in the input 

to a membership value or degree of membership between 0 and 1. The input is referred 

to as the universe of discourse. Figure 1 shows some typical membership functions 

(Passino and Yurkovich 1998). The typical membership functions may include 

triangular membership function, trapezoidal membership function, a simple Gaussian 

membership function, a two-sided composite of two different Gaussian curves, 

generalised bell shape membership function, sigmoidal membership functions, a 

singleton membership function, etc (A Zadeh 1995). 
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Figure1 Some typical membership functions 

Source : (Passino and Yurkovich 1998; Mukaidono 2001) 
 

The triangular membership function is commonly used due to its simplicity. Because of 

the smoothness and concise notation of the Gaussian membership function, it is also 

often used for specifying fuzzy sets. The mathematical descriptions of the triangular and 

Gaussian membership functions are provided in Tables 1 and 2 (Reznik 1997; Passino 

and Yurkovich 1998). 

Additional concepts related to membership functions and fuzzy sets such as support of a 

fuzzy set, α-cut, height of a fuzzy set or membership function, normal fuzzy sets, convex 

fuzzy sets, extension principle can be found in (Reznik 1997; Passino and Yurkovich 

1998). 
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Table 1 Mathematical characterisation of triangular membership function 
Source: (Reznik 1997; Passino and Yurkovich 1998) 
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 Gaussian Membership Function 
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Table 2 Mathematical characterisation of Gaussian membership function  
Source: (Reznik 1997; Passino and Yurkovich 1998) 

 

Linguistic Variables and Hedges 

A linguistic variable is a variable with its values represented by either using words or 

sentences of a natural language or by using numerical expression. Figure 2 illustrates 

the definition of the linguistic variable (Reznik 1997).   

 

Figure 2 Linguistic variable  
Source : (Reznik 1997; Mukaidono 2001) 

 

In general, a linguistic variable is a composite term. It normally consists of primary 

terms and hedges. A primary term is just a name or a label of a fuzzy set. For example, 

‘slow’, medium’ and ‘fast’ are the primary terms of the linguistic variables that can be 

used to describe the variable speed (see Figure 3). Hedges represent words and 
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expression of the natural language and a vocabulary of the natural language. Typical 

hedges are ‘very’, ‘most’, ‘rather’, ‘slightly’, ‘more or less’, etc. Some widely used 

hedges and their meanings are shown in Table 3 (Reznik 1997; Mukaidono 2001).  

Hedge Meaning 
About, around, near, roughly Approximate a scalar 
Above, more than Restrict a fuzzy region 
Almost, definitely, positively Contrast intensification 
Below, less than Restrict a fuzzy region 
Vicinity of Approximate broadly 
Generally, usually Contrast diffusion 
Neighbouring, close to Approximately narrowly 
Not Negation or complement 
Quite, rather, somewhat Dilute a fuzzy region 
Very, extremely Intensify a fuzzy region 

Table 3 Some widely used hedges 
Source: (Reznik 1997; Mukaidono 2001) 

 
Figure 3 Membership functions for linguistic values  
Source: (Reznik 1997; Passino and Yurkovich 1998) 
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Figure 4 shows the application of different hedges to describe ‘medium’ speed. 
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Figure 4 Application of different hedges  
Source: (Reznik 1997; Mukaidono 2001) 

 

Operations on Fuzzy sets 

Fuzzy Complement:  

The complement of a fuzzy set A has a membership function which is pointwise defined 

for all u ∈ U by: 

μA( u ) = 1 -  μA( u ). 

This corresponds to the logic NOT operation.  

Fuzzy Intersection: 

The intersection of two fuzzy sets C= A  ∩ B has the membership function: 

μA  ∩ B (u ) = μA(u)   t   μB(u)  ≤  Min (μA(u)  , μB(u) ) 

where t is a triangular norm (or measure) defined as follows:  

The t norm or triangular norm is a two place function from [0,1] * [0,1] to [0,1], i.e. t: 

[0,1] * [0,1] → [0,1] which is non-decreasing in each element  x t w ≤ y t z   if   x ≤  y,  
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w ≤ z. It is commutative, associative and satisfies boundary conditions x t 0 = 0, and x t 

1 = x; for any x,y,z,w ∈ [0,1]. 

 

Figure 5 displays two different ways for calculating t-norm operations. One method 

uses minimum operation and the other method uses product operation.  

 
Figure 5 Two different ways (minimum and product) for calculating t-norm operations 
Source:  (Reznik 1997; Passino and Yurkovich 1998) 

 
Fuzzy Union 

The union (or disjunction) of two fuzzy sets C = A ∪ B has the membership function: 

μA  ∪  B (u ) = μA(u)   s   μB(u)  ≥  Max ( μA(u)  ,  μB(u) ) 

where s is a triangular co-norm (or measure, or s -norm) defined as follows: 

The s norm or triangular co-norm is a two place function from [0,1] * [0,1] to [0,1], i.e. 

s: [0,1] * [0,1] → [0,1] which is non-decreasing in each element, commutative, 

associative and satisfies boundary conditions x s 0 = x, and x s 1 = 1; for all x ∈ [0,1]. 

Some classes of fuzzy set unions and intersections are shown in Table 4. 
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    SOME CLASSES OF FUZZY SET UNIONS AND INTERSECTIONS 

Reference       Fuzzy Unions                Fuzzy Intersections   Range of Parameter                                    
___________________________________________________________________ 
 
  Max (a,b)   Min (a,b) 
____________________________________________________________________ 
 
  a + b - ab   ab 
____________________________________________________________________ 
 
Schweizer &   1 - max[0, (1 - a) -p + (1 +b) -p -1)] 1/p        max(0,a-p +b-p -1)-1/p         p ∈ (- ∞,∞) 
Sklar [1961] 
____________________________________________________________________ 
 
Hamacher       (a +b - (2 - g) ab)/(1 - (1 - g)ab)                  ab/(g+(1-g)(a+b-ab))            g ∈ (0, ∞ ) 

 [1978] 
______________________________________________________________________ 
 
Frank [1979]   1 -- logs [1+ (s1-a -1) (s1-b -1)/s -1]              logs [1+(sa-1)(sb-1)/s-1]            s ∈ (0,∞ ) 

______________________________________________________________________ 
 
Yager [1980]   Min[ 1, (aw+bw)1/w]                                 1-Min[1,(1-a)w+(1-b)w)1/w]       w ∈ (0, ∞ ) 

_____________________________________________________________________ 
 
Dubois &          a +b - ab - min(a,b,1 - α) 

 Prade [1980] __________________   ab/max(a,b,α)                      α ∈ (0,1) 

          max(1-a,1-b,α)   

______________________________________________________________________ 
Dombi [1982] 

     1                      1 

  ______________________  ___________________       λ ∈ (0,∞) 

  1+[(1/a-1)-λ +(1/b -1) -λ]-1/λ  1+[(1/a-1)λ +(1/b-1)λ]1/λ 

Table 4 Some classes of fuzzy set unions and intersections 
Source: (Reznik 1997; Passino and Yurkovich 1998) 
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The Rule Base  

Most of the fuzzy logic applications involve fuzzy rules construction and processing. 

Fuzzy rules are used to describe qualitative dependencies between two or more 

variables in linguistic terms. Fuzzy rules processing or reasoning provides a mechanism 

for using fuzzy rules to compute the response to a given fuzzy input.  The If-Then rule 

statements are used to formulate the conditional statements that represent fuzzy logic. 

The general form of the linguistic rules is:  

If premise Then consequent 

The premises are sometimes called antecedents, they are associated with the fuzzy 

inputs and are put on the left-hand-side of the rules, while the consequents which are 

sometimes called different names such as conclusions or actions are associated with the 

fuzzy outputs and are put on the right-hand-side of the rules (Reznik 1997; Passino and 

Yurkovich 1998). For example one of the rules developed for the fuzzy logic controller 

for the magnetic bearing system can be represented as: 

If error is negative big and change-in-error is negative big Then force is negative big. 

Some important properties for a set of rules are (Reznik 1997; Passino and Yurkovich 

1998): 

 Completeness 

A set of if-then rules is complete if any combination of input values results in an 

appropriate output value.  

 Consistency 

A set of if-then rules is inconsistent if there are two rules with the same rules-

antecedent but different rule-consequent. 
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 Continuity 

A set of if-then rules is continuous if it does not have neighbouring rules with 

output fuzzy sets that have empty intersections.  

 

Fuzzy Cartesian Product 

The intersection and union described previously are both defined for fuzzy sets that lie 

on the same universe of discourse. The fuzzy Cartesian product is used to quantify 

operations on many universes of discourse. If A1, …, An are fuzzy sets in the universes 

of discourse U1, …, Un then the Cartesian product of A1, …, An is a fuzzy set in the 

product space U1*…* Un with the membership function: 

μA1*…*An  (u1,…,un ) = μA1(u1)  t   μA2(u2) t …t μAn(un)    

The t norm used in the Cartesian product represents the “ands” used in the rule 

antecedent as each of the terms in an antecedent comes from a different universe of 

discourse (Reznik 1997; Passino and Yurkovich 1998). 

 
Fuzzy Quantification of Rules: Fuzzy Implications 
 
Fuzzy implication is used to quantify the linguistic elements in the antecedent and the 

consequent of the linguistic If-Then rule with fuzzy sets.  

 

Fuzzification 

Fuzzification is the process of converting numeric inputs into fuzzy sets. These fuzzy 

sets are used to quantify the information in the rule base. The inference mechanism 

operates on the fuzzy sets in the rule base to produce fuzzy sets.  
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The Inference Mechanism 

The inference mechanism is used to produce fuzzy sets representing the conclusions that 

it reaches using the current inputs and the rule base. The inference mechanism has two 

basic tasks. The first task is called matching and the second is called inference. In the 

first task, the extent to which a rule is relevant to the current situation as characterised 

by the inputs is determined. The antecedents of all the rules are compared to the 

controller inputs in order to determine which rules apply to the current situation. The 

“matching” process involves determining the certainty that each rule applies, and 

recommending certain rules to be applied to the current situation. Matching involves 

two basic steps. The first step of the matching combines the fuzzy sets from 

fuzzification with the fuzzy sets used in each of the terms in the antecedents of the rule. 

The second step of matching determines which rules are on. Membership values 

represent the certainty of an antecedent of a rule is determined in that particular step. In 

the inference step, conclusions are drawn from the current inputs and the information in 

the rule-base. There are two standard alternatives in this step. One method uses the 

implied fuzzy sets. The implied fuzzy set specifies the certainty level that the output 

should be a specific crisp output with the output universe of discourse, taking into 

consideration one rule at a time.  Another inference method computes the overall 

implied fuzzy set considering all the rules in the rule base at the same time (A Zadeh 

1995; Passino and Yurkovich 1998).  
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Defuzzification 

The defuzzification process converts the fuzzy set quantifications of the conclusions 

obtained in the inference step to a numeric value that can be applied to the plant.  

There are many defuzzification methods. Each method produces a single output based 

on either the implied fuzzy sets or the overall implied fuzzy set.  

Drawing on (A Zadeh 1995; Reznik 1997), some of the defuzzification methods are 

listed below:  

o Centre of Area / Gravity (CoA) 

o Centre average 

o Centre of Largest Area (CLA) 

o First of Maxima (FoM) /Last of Maxima  

o Middle of Maxima (MoM) 

o Mean of maxima 

o Height of defuzzification (HM)  

Comparison of different defuzzification procedures uses the following four 

characteristics: 

• Continuity 

A small change in an input of a fuzzy controller should not result in a large change in 

the output. 

• Disambiguity 

A deffuzzification method should work in any situation. The centre of largest area 

method does not allow  a choice when there are two equal areas.  
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• Plausibility 

A procedure produces a defuzzified output that lies approximately in the middle of 

the support of the resulting membership function and has a high degree of 

membership. 

• Computational Complexity 

This is important in practical applications. It depends on the shape of the output 

membership function and the max-min composition or the scaled composition. 

Table 5 compares a few different defuzzification methods using the above characteristic 

descriptions. 

 CoA MoM FoM HM CLA 

Continuity Yes No No Yes No 

Disambiguity Yes Yes Yes Yes No 

Plausibility Yes No* No Yes Yes 

Computational 

Complexity 

Bad Good Good Good Bad 

Table 5 Comparison of deffuzzification methods 
Source: (Reznik 1997; Passino and Yurkovich 1998) 

 

 CoA= Centre of Area 

 MoM=Middle of Maxima 

 FoM=First of Maxima 

 HM=Height and Mean of maxima 

 CLA=Centre of Largest Area 

 No*=only in the case of scaled inference 
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The fuzzy system described above is either called a standard fuzzy system or referred to 

as the Mamdani method. Alternatively, another method of fuzzy processing is defined 

as a functional fuzzy system which is referred to as the Sugeno method. In the Sugeno 

method, the antecedent part of the rule is similar to that of the Mamdani method. 

However, the consequent parts of the rules are different. The consequent part uses a 

mathematical function of the input variables instead of a linguistic term with an 

associate membership function (Passino and Yurkovich 1998).  

Table 6 shows some similarities and differences between these two methods. 

  Mamdani Takagi-Sugeno 
Similarity The antecedent parts of the rules are the same. 

Difference The consequent parts are fuzzy 
sets. 

The consequent parts are 
singletons (single spikes) or 
mathematical functions of them. 
It is more effective 
computationally. It is more 
convenient in mathematical and 
system analysis. 

Advantages It is very understandable by 
human experts. It is simpler to 
formulate rules. This method 
was proposed earlier and 
commonly used. It guarantees continuity of the 

output surface. 
Table 6 Comparison of Mamdani and Takagi-Sugeno Methods 

Sources: (Reznik 1997; Passino and Yurkovich 1998; Mukaidono 2001) 
 
Figure 6 shows an example illustrating the fuzzy processing described in this section 
using the Mamdani and Sugeno methods (Reznik 1997). 
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Figure 6 An example of fuzzy processing using Mamdani and Takagi-Sugeno methods  

Source: (Reznik 1997; Passino and Yurkovich 1998) 


